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1 Introduction

These notes are intended for use in the warm-up camp for incoming UNC STOR graduate
students. Welcome to Carolina!

We assume that you have taken a linear algebra course before and that most of the ma-
terial in these notes will be a review of what you’ve already known. If some of the material
is unfamiliar, do not be intimidated! We hope you find these notes helpful. If not, you
can consult the references listed at the end, or any other textbooks of your choice for more
information or another style of presentation (most of the proofs on linear algebra part have
been adopted from Strang, the proof of F-test from Montgomery et al, and the proof of
bivariate normal density from Bickel and Doksum).

Linear algebra is an important and fundamental math tool for probability, statistics, nu-
merical analysis and operations research. Lots of material in this notes will show up in your
future study and research. There will be 8 algebraic classes in total. In the second week
we may cover some topics in computational linear algebra with applications to statistics
and machine learning (PCA, PageRank, Spectra Clustering, etc). See the notes and course
schedule on the UNC STOR bootcamp webpage.

3



2 Vector Spaces

A set V is a vector space over R (or any field) with two operations defined on it:

1. Vector addition, that assigns to each pair of vectors v1, v2 ∈ V another vector w ∈ V
(we write v1 + v2 = w)

2. Scalar multiplication, that assigns to each vector v ∈ V and each scalar r ∈ R (field)
another vector w ∈ V (we write rv = w)

The elements of V are called vectors and must satisfy the following 8 conditions ∀ v1, v2, v3 ∈
V and ∀ r1, r2 ∈ R:

1. Commutativity of vector addition: v1 + v2 = v2 + v1

2. Associativity of vector addition: (v1 + v2) + v3 = v1 + (v2 + v3)

3. Identity element of vector addition: ∃ vector 0 ∈ V , s.t. v + 0 = v, ∀ v ∈ V

4. Inverse elements of vector addition: ∀ v ∈ V ∃ −v = w ∈ V s.t. v + w = 0

5. Compatibility of scalar multiplication with (field) multiplication: r1(r2v) = (r1r2)v, ∀
v ∈ V

6. Distributivity of scalar multiplication with respect to (field) addition: (r1 + r2)v =
r1v + r2v, ∀ v ∈ V

7. Distributivity of scalar multiplication with respect to vector addition: r(v1 + v2) =
rv1 + rv2, ∀ r ∈ R

8. Identity element of scalar multiplication: 1v = v, ∀ v ∈ V

Vector spaces over fields other than R are defined similarly, with the multiplicative iden-
tity of the field replacing 1. We won’t concern ourselves with those spaces, except for when
we need complex numbers later on. Also, we’ll be using the symbol 0 to designate both the
number 0 and the vector 0 in V , and you should always be able to tell the difference from the
context. Sometimes, we’ll emphasize that we’re dealing with, say, n× 1 vector 0 by writing
0n×1.

Here are some examples of vector spaces

1. Rn with usual operations of element-wise addition and scalar multiplication. An ex-
ample of these operations in R2 is illustrated in Figure 2.

2. Vector space F[−1,1] of all functions defined on interval [−1, 1], where we define (f+g)(x)
= f(x) + g(x) and (rf)(x) = rf(x).
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Figure 1: Vector Addition and Scalar Multiplication

2.1 Basic Concepts

Subspace and span We say that S ⊂ V is a subspace of V , if S is closed under vector
addition and scalar multiplication, i.e.

1. ∀s1, s2 ∈ S, s1 + s2 ∈ S

2. ∀s ∈ S, ∀r ∈ R, rs ∈ S

You can verify that if those conditions hold, S is a vector space in its own right (satisfies the
8 conditions above). Note also that S has to be non-empty; the empty set is not allowed as
a subspace.

Examples:

1. A subset {0} is always a subspace of a vectors space V .

2. Given a set of vectors S ⊂ V , span(S) = {w : w =
∑n

i=1 rivi, ri ∈ R, and vi ∈ S}, the
set of all linear combinations of elements of S (see below for definition) is a subspace
of V .

3. S = {(x, y) ∈ R2 : y = 0} is a subspace of R2 (x-axis).

4. The set of all continuous functions defined on interval [−1, 1] is a subspace of F[−1,1].

For all of the above examples, you should check for yourself that they are in fact subspaces.

Given vectors v1, v2, . . . , vn ∈ V , we say that w ∈ V is a linear combination of

v1, v2, . . . , vn if for some r1, r2, . . . , rn ∈ R, we have w =
n∑
i=1

rivi. If every vector in V is

a linear combination of S = {v1, v2, . . . , vn}, we have span(S) = V , then we say S spans V .

Fact: A set S ⊆ V is a subspace if and only if it is closed under linear combinations.

Linear independence and dependence Given vectors v1, v2, . . . , vn ∈ V we say that

v1, v2, . . . , vn are linearly independent if
n∑
i=1

rivi = 0 =⇒ r1 = r2 = . . . = rn = 0, i.e. the

only linear combination of v1, v2, . . . , vn that produces 0 vector is the trivial one. We say
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that v1, v2, . . . , vn are linearly dependent otherwise.

We now prove two results that will be used later and give some practice with linear al-
gebra proofs.

Theorem: Let I, S ⊂ V be such that I is linearly independent, and S spans V . Then
for every x ∈ I there exists a y ∈ S such that {y} ∪ I\{x} is linearly independent.

Proof : We prove this result by contradiction. First two two facts that can be easily
verified from the definitions above.

1. If a set J ⊂ V is linearly independent, then J ∪ {y} is linearly dependent if and only
if y ∈ span(J).

2. If S, T ⊂ V with T ⊂ span(S) then span(T ) ⊂ span(S).

Assume for the sake of contradiction that the claim does not hold. I.e. suppose there
there exists a x ∈ I such that for all y ∈ S {y}∪I\{x} is linearly dependent. Let I ′ = I\{x}.
Since I is linearly independent it follows that I ′ is also linearly independent. Then by the
first fact above, the fact that {y} ∪ I ′ is linearly dependent implies y ∈ span(I ′). Moreover,
this holds for all y ∈ S so S ⊂ span(I ′).

By the second fact we then have that span(S) ⊂ span(I ′). Now since S spans V
it follows that x ∈ V = span(S) ⊂ span(I ′) = span(I\{x}). This means there exists
v1, v2, . . . , vn ∈ I\{x} and r1, r2, . . . , rn ∈ R such that 0 = x −

∑n
i=1 rivi, contradicting the

assumption that I linearly independent. �

Corollary: Let I, S ⊂ V be such that I is linearly independent, and S spans V . Then
|I| ≤ |S|, where |· | denotes the number of elements of a set (possibly infinite).

Proof : If |S| = ∞ then the claim holds. Additionally, if I ⊂ S the claim holds. So
assume |S| = m <∞, and I 6⊂ S.

Now consider the following algorithm. Select x ∈ I, x /∈ S. By the theorem above, choose
a y ∈ S such that I ′ = {y} ∪ I\{x} is linearly independent. Note that |I ′| = |I| and that
|I ′ ∩ S| > |I ∩ S|. If I ′ ⊂ S then the claim holds and stop the algorithm, otherwise continue
the algorithm with I = I ′.

Now note that the above algorithm must terminate in at most m < ∞ steps. To see
this, first note that after the mth iteration S ⊂ I ′. Next, if the algorithm does not terminate
at this iteration I ′ 6⊂ S, and there would exist a x ∈ I ′, x /∈ S. But then since S spans V
there would exist v1, v2 . . . , vn ∈ S ⊂ I ′ and r1, r2, . . . , rn ∈ R such that 0 = x −

∑n
i=1 rivi

contradicting I ′ linearly independent. �

In the following definitions, the reader might want to look ahead to the section on normed
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and metric spaces. We follow Lax, Functional Analysis, for most infinite-dimensional con-
cepts.

Basis and dimension Suppose {vi}i∈I , where I is an arbitrary index set, are vectors in
a normed space V that are linearly independent and such that the closure (in the norm
topology) of span{vi}i∈I is V . Then we say that the set {vi}i∈I is a basis for V whose
dimension is the cardinality of I.

The span of a finite number of vectors is closed, so if |I| <∞, for example when V = Rn,
then we have V = span{vi}i∈I .

The following theorem is proved using Zorn’s lemma.

Theorem: Every vector space V has a basis.

Theorem: Let S be a basis for V , and let T be another basis for V . Then |S| = |T |.

Proof: This follows directly from the above Corollary since S and T are both linearly
independent, and both span V . �

We focus on finite-dimensional spaces. The most common infinite-dimensional spaces
have countable bases, rather than uncountable ones.

Examples:

1. S = {0} has dimension 0.

2. Any set of vectors that includes 0 vector is linearly dependent (why?)

3. If V has dimension n, and we’re given k < n linearly independent vectors in V , then
we can extend this set of vectors to a basis.

4. Let v1, v2, . . . , vn be a basis for V . Then if v ∈ V , v = r1v1 + r2v2 + . . .+ rnvn for some
r1, r2, . . . , rn ∈ R. Moreover, these coefficients are unique, because if they weren’t,
we could also write v = s1v1 + s2v2 + . . . + snvn, and subtracting both sides we get
0 = v−v = (r1−s1)v1 +(r2−s2)v2 + . . .+(rn−sn)vn, and since the vi’s form basis and
are therefore linearly independent, we have ri = si ∀i, and the coefficients are indeed
unique.

5. v1 =

[
1
0

]
and v2 =

[
−5
0

]
both span x-axis, which is the subspace of R2. Moreover,

any one of these two vectors also spans x-axis by itself (thus a basis is not unique,
though dimension is), and they are not linearly independent since 5v1 + 1v2 = 0
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6. e1 =

 1
0
0

, e2 =

 0
1
0

, and e3 =

 0
0
1

 form the standard basis for R3, since every

vector

 x1

x2

x3

 in R3 can be written as x1e1 + x2e2 + x3e3, so the three vectors span R3

and their linear independence is easy to show. In general, Rn has dimension n.

7. Let dim(V ) = n, and let v1, v2, . . . , vm ∈ V , s.t. m > n. Then v1, v2, . . . , vm are linearly
dependent.

8. Suppose that we are interested in defining a basis for C([0, 1]), the space of all con-
tinuous real-valued functions defined on the interval [0, 1]. What difficulties might
arise?

2.2 Special Spaces

Inner product space (Real) A real inner product space is a vector space over R equipped
with a function f : V × V → R (which we denote by f(v1, v2) = 〈v1, v2〉), s.t. ∀ v, w, z ∈ V ,
and ∀r ∈ R:

1. 〈v, w + rz〉 = 〈v, w〉+ r〈v, z〉 (linearity)

2. 〈v, w〉 = 〈w, v〉 (symmetry)

3. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0 (positive-definiteness)

Typically, we will consider only real vector spaces. However, complex inner product
spaces are ubiquitous, so we give a definition.

Inner product space (Complex) A complex inner product space is a vector space over
C, the complex numbers, equipped with a function 〈·, ·〉 : V × V → C, with the following
properties

1. 〈v, w + αz〉 = 〈v, w〉+ ᾱ〈v, z〉 (anti-linearity)

2. 〈w + αz, v〉 = 〈w, v〉+ α〈z, v〉 (linearity)

3. 〈v, w〉 = 〈w, v〉 (skew symmetry)

4. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0 (positive-definiteness)

where ᾱ denotes the conjugate of a complex number α. In some texts, the convention
is to make anti-linearity appear in the first argument of the inner product rather than the
second.

Examples:
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1. In Rn the standard inner product between two vectors is xTy. Given 2 vectors x, y ∈ Rn

where x = [x1, x2, · · · , xn]T and y = [y1, y2, · · · , yn]T , we define their inner product

〈x, y〉 = xTy :=
n∑
i=1

xiyi

You can check yourself that the 3 properties above are satisfied, and the meaning of
notation xTy will become clear from the next section.

2. Given f, g ∈ C([−1, 1]), we define 〈f, g〉 =
∫ 1

−1
f(x)g(x)dx. Once again, verification

that this is indeed an inner product is left as an exercise.

Normed space The norm, or length, of a vector v in the vector space V is a function
g : V → R (which we denote by g(v) = ‖v‖), s.t. ∀ v, w ∈ V , and ∀r ∈ R:

1. ‖rv‖ = |r|‖v‖

2. ‖v‖ ≥ 0, with equality if and only if v = 0

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ (triangle inequality)

Examples:

1. In Rn, let’s define the length of a vector x := ‖x‖ =
√
x2

1 + x2
2 + . . .+ x2

n =
√
xTx,

or ‖x‖2 = xTx. This is called the Euclidian norm, or the L2 norm (denote by ‖x‖2).
(verify it by yourself)

2. Again in Rn, if we define ‖x‖ = |x1| + . . . + |xn|, it’s also a norm called the L1 norm
(denote by ‖x‖1). (verify it by yourself)

3. Given p ≥ 1 and f ∈ C([−1, 1]), we define ‖f‖p =
(∫ 1

−1
|f(x)|pdx

) 1
p
, which is also a

norm. It is clear that || · ||p satifies the first two properties of norms, so we will show
the triangle inequality (known as Minkowski’s Inequality) holds as well.

Proof : Let f, g ∈ C([−1, 1]) be nonzero, and note that the function x 7→ xp is convex,
so for each t ∈ [0, 1] and x ∈ [−1, 1],(

t
|f(x)|
||f ||p

+ (1− t) |g(x)|
||g||p

)p
≤ t

(
|f(x)|
||f ||p

)p
+ (1− t)

(
|g(x)|
||g||p

)p
.

In particular, since λ
·

= ||f ||p
||f ||p+||g||p ∈ [0, 1],(

λ
|f(x)|
||f ||p

+ (1− λ)
|g(x)|
||g||p

)p
≤ λ

(
|f(x)|
||f ||p

)p
+ (1− λ)

(
|g(x)|
||g||p

)p
.
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so

1

(||f ||p + ||g||p)p

∫
(|f(x)|+ |g(x)|)pdx =

∫ (
λ
|f(x)|
||f ||p

+ (1− λ)
|g(x)|
||g||p

)p
dx

≤ λ

||f ||pp

∫
|f(x)|pdx+

(1− λ)

||g||pp

∫
|g(x)|pdx

=
λ

||f ||p
||f ||pp +

1− λ
||g||p

||g||pp

= 1.

It follows that ∫
(|f(x)|+ |g(x)|)pdx ≤ (||f ||p + ||g||p)p,

so it is enough for us to observe that

||f + g||pp =

∫
|f(x) + g(x)|pdx ≤

∫
(|f(x)|+ |g(x)|)pdx = (||f ||p + ||g||p)p.

�

4. For any inner product space V , ‖x‖ =
√
〈x, x〉 defines a norm.

Again, not all vector spaces have norms defined in them. For those with defined norms,
they are called the normed spaces.

In general, we can naturally obtain a norm from a well defined inner product space. Let
‖v‖ =

√
〈v, v〉 for ∀v ∈ V , where 〈·, ·〉 is the inner product on the space V . It’s not hard

to verify all the requirements in the definition of norm (verify it by yourself). Thus, for any
defined inner product, there is a naturally derived norm. However, not all normed spaces
have a norm which is derived from an inner product.

Many normed spaces have norms which are not derived from an inner product (see the
exercises at the end of this chapter).

Metric Space A more general notion of distance on the vector space is the metric. In
fact, metrics do not require the vector space structure and can be defined on many types of
spaces, such as graphs. We limit our focus to vector spaces V to reduce notation.

A metric is a function d : V × V → R such that for x, y, z ∈ V it satisfies:

1. d(x, y) = d(y, x)

2. d(x, y) ≥ 0, with equality if and only if x = y

3. d(x, y) ≤ d(x, z) + d(y, z) (triangle inequality)
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A space equipped with a metric is called metric space. We will assume the reader is fa-
miliar with metric spaces and the basic related concepts, such as topology, completeness,
compactness, continuity and separability.

Hilbert and Banach spaces, and separability A complete inner product space is called
Hilbert space. A complete normed space is a Banach space.

We note that a Hilbert space is separable if and only if it has a countable orthonormal
basis (see the definitions below). Also, all finite-dimensional inner product spaces are
Hilbert spaces.
Examples:

1. Define a metric on the vertices of a connected graph as the shortest path length between
them.

2. Let V = [−1, 1] and define the discrete metric

d(x, y) =

{
1 x = y

0 x 6= y

For any normed space, we can naturally derive a metric as d(x, y) = ‖x−y‖. This metric
is said to be induced by the norm ‖ · ‖. However, the opposite is not true: the metric defined
on a vector space need not be derived from a norm.

If a metric d on a vector space V satisfies the properties: ∀x, y, z ∈ V and ∀r ∈ R,

1. d(x, y) = d(x+ z, y + z) (translation invariance)

2. d(rx, ry) = |r|d(x, y) (homogeneity)

then we can define a norm on V by ‖x‖ := d(x, 0).

To sum up, the relation between the three special spaces is as follows:

inner product → norm → metric.

We mean that every inner product on a vector space induces a norm on that vector space,
and every norm on a vector space induces a metric on that vector space.

Remark: Sometimes you will come across quantities that similar like one of these ob-
jects. For example, the Kullback-Leibler divergence (also called relative entropy) is a measure
of how similar two probability distributions are. It is called a distance which is like a metric,
but does not satisfy the triangle inequality. Another example is a Kernel which is a lot like
an inner product, but it allow us to do statistics in more complicated spaces (that might not
even be linear spaces e.g. string, image or graph kernels).
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2.3 Properties and geometry of inner product spaces

We say that vectors v, w in an inner product space V are orthogonal if 〈v, w〉 = 0. It is
denoted as v ⊥ w.

An arbitrary set of vectors {vi}i∈I in V is called orthonormal if xi ⊥ xj and ‖xi‖ = 1
for all i, j ∈ I.

Examples:

1. In Rn the notion of orthogonality agrees with our usual perception of it. If x is or-
thogonal to y, then Pythagorean theorem tells us that ‖x‖2 + ‖y‖2 = ‖x − y‖2.
Expanding this in terms of inner products we get:

xTx+ yTy = (x− y)T (x− y) = xTx− yTx− xTy + yTy or 2xTy = 0

and thus 〈x, y〉 = xTy = 0.

2. Nonzero orthogonal vectors are linearly independent. Suppose we have q1, q2, . . . , qn,
a set of nonzero mutually orthogonal vectors in a finite-dimensional space V , i.e.,
〈qi, qj〉 = 0 ∀i 6= j, and suppose that r1q1 + r2q2 + . . . + rnqn = 0. Then taking inner
product of q1 with both sides, we have r1〈q1, q1〉+r2〈q1, q2〉+. . .+rn〈q1, qn〉 = 〈q1, 0〉 = 0.
That reduces to r1‖q1‖2 = 0 and since q1 6= 0, we conclude that r1 = 0. Similarly,
ri = 0 ∀ 1 ≤ i ≤ n, and we conclude that q1, q2, . . . , qn are linearly independent.

3. Suppose we have a n × 1 vector of observations x = [x1, x2, · · · , xn]T ∈ Rn. Let

x̄ = 1
n

n∑
i=1

xi ∈ R be the mean of the observations and c = [x1 − x̄, x2 − x̄, · · ·xn − x̄]T

be the vector of mean centered observations. Then c is orthogonal to the vector of ones
1n = [1, 1, · · · , 1]T ∈ Rn, since

1Tnc =
n∑
i=1

1(xi − x̄) =
n∑
i=1

xi − nx̄

=
n∑
i=1

xi −
n∑
i=1

xi = 0

Orthogonal subspace and complement Suppose S, T are subspaces of a possibly infinite-
dimensional inner-product space V . Then we say that they are orthogonal subspaces if
every vector in S is orthogonal to every vector in T . We say that S is the orthogonal
complement of T in V , if S contains ALL vectors orthogonal to vectors in T and we write
S = T⊥.

For example, the x-axis and y-axis are orthogonal subspaces of R3, but they are not
orthogonal complements of each other, since y-axis does not contain [0, 0, 1]T , which is per-
pendicular to every vector in x-axis. However, y-z plane and x-axis ARE orthogonal com-
plements of each other in R3.
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You should prove as an exercise that if dim(V ) = n, and dim(S) = k, then dim(S⊥) =
n− k.

Cauchy-Schwarz Inequality: for v and w elements of V , the following inequality holds:

〈v, w〉2 ≤ 〈v, v〉 · 〈w,w〉

with equality if and only if v and w are linearly dependent.

Proof 1: Suppose that v and w are nonzero, and consider the second degree polynomial

p(t) = 〈tw + v, tw + v〉 = 〈w,w〉t2 + 2〈w, v〉t+ 〈v, v〉.

Note that p(t) is nonnegative for all t, and thus has either one real root or two complex

roots. In the first case the zero occurs at t = − 〈w,v〉〈w,w〉 , so we have

0 = p

(
− 〈w, v〉
〈w,w〉

)
= 〈w,w〉

(
〈w, v〉
〈w,w〉

)2

+ 2〈w, v〉
(
− 〈w, v〉
〈w,w〉

)
+ 〈v, v〉.

Multiplying the expression above by 〈w,w〉 and simplifying reveals that

〈w, v〉2 = 〈v, v〉 · 〈w,w〉.

If there are two complex roots, then it must be the case that

(2〈w, v〉)2 − 4〈w,w〉 · 〈v, v〉 < 0,

which can be simplified to show that

〈w, v〉2 < 〈v, v〉 · 〈w,w〉.

If v and w are linearly independent, then p(t) is strictly positive for all real t (as tw + v
will be nonzero for all t), which means that both roots are complex, and thus that equality
does not hold. If v and w are linearly dependent, then we can find some real t such that
tw+ v = 0, which means that p(t) has one real root, and, as shown above, equality holds. �

Proof 2: Note that 〈v, 0〉 = −〈v,−0〉 = −〈v, 0〉 ⇒ 〈v, 0〉 = 0,∀v ∈ V. If w = 0, the

equality obviously holds. If w 6= 0, let λ = 〈v,w〉
〈w,w〉 . Since

0 ≤ 〈v − λw, v − λw〉
= 〈v, v〉 − 2λ〈v, w〉+ λ2〈w,w〉

= 〈v, v〉 − 〈v, w〉
2

〈w,w〉

�

13



With Cauchy-Schwarz inequality, we can define the angle between two nonzero vectors
v and w as:

angle(v, w) = arccos

(
〈v, w〉√

〈v, v〉 · 〈w,w〉

)
The angle is in [0, π). This generates nice geometry for the inner product space. For

example, the Pythagorean theorem from Euclidean geometry holds in this abstract setting
and is proved by direct computation as shown in the example above for Rn.

Pythagorean theorem: Let V be an inner product space with inner product 〈·, ·〉. For
each pair of orthogonal vectors x, y ∈ V ,

‖x+ y‖2 = ‖x‖2 + ‖y‖2

Parallelogram Identity: For each x, y ∈ V , an inner product space,

||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2.

Proof. Calculate

||x+ y||2 + ||x− y||2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 〈x, x〉+ 2〈x, y〉+ 〈y, y〉+ 〈x, x〉 − 2〈x, y〉+ 〈y, y〉
= 2||x||2 + 2||y||2.

�

Any norm satisfying the Parallelogram Identity is derived from an inner product. The
proof is straightforward and uses the Polarization Identity, which itself is proven by cal-
culation.

Polarization Identity: Let V be an inner product space and let || · || be the norm derived
from the inner product.

If V is over R
〈x, y〉 =

1

4

(
||x+ y||2 − ||x− y||2

)
∀x, y ∈ V,

and if V is over C

〈x, y〉 =
1

4

(
||x+ y||2 − ||x− y||2

)
− i

4

(
||x+ iy||2 − ||x− iy||2

)
∀x, y ∈ V,

Law of cosines Thanks to the Cauchy-Schwartz inequality, we may define the following
notion of an angle between x, y ∈ V , a real inner product space, by

ang(x, y) = arccos
〈x, y〉
‖x‖‖y‖

∈ [0, π]

14



Thus x ⊥ y has the geometric intepretation that x, y are at right angles to each other.
We also recover the law of cosines by expanding ‖x− y‖2 and using the equality above, as

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos(ang(x, y))

2.4 Gram-Schmidt Process

Suppose we’re given linearly independent vectors v1, v2, . . . , vn in an inner product space V .
Then we know that v1, v2, . . . , vn form a basis for the subspace which they span. Then, the
Gram-Schmidt process can be used to construct an orthogonal basis for this subspace,
as follows:

Let q1 = v1 Suppose v2 is not orthogonal to v1. then let rv1 be the projection of v2

on v1, i.e. we want to find r ∈ R s.t. q2 = v2 − rq1 is orthogonal to q1. Well, we should
have 〈q1, (v2 − rq1)〉 = 0, and we get r = 〈q1,v2〉

〈q1,q1〉 . Notice that the span of q1, q2 is the same as
the span of v1, v2, since all we did was to subtract multiples of original vectors from other
original vectors.

Proceeding in similar fashion, we obtain

qi = vi −
( 〈q1, vi〉
〈q1, q1〉

q1 + . . .+
〈qi−1, vi〉
〈qi−1, qi−1〉

qi−1

)
,

and we thus end up with an orthogonal basis for the subspace. If we furthermore divide each
of the resulting vectors q1, q2, . . . , qn by its length, we are left with orthonormal basis, i.e.
〈qi, qj〉 = 0 ∀i 6= j and 〈qi, qi〉 = 1, ∀i (why?). We call these vectors that have length 1 unit
vectors.

Gram-Schmidt is used to prove the following theorem in the finite and countably-infinite-
dimensional cases by induction. In the uncountably infinite-dimensional case one must use
Zorn’s lemma.

Theorem: Every Hilbert space has an orthonormal basis.

You can now construct an orthonormal basis for the subspace of F[−1,1] spanned by
f(x) = 1, g(x) = x, and h(x) = x2 (Exercise 2.6 (b)). An important point to take away is
that given any basis for finite-dimensional V , if there’s an inner product defined on V , we
can always turn the given basis into an orthonormal basis.

Example Consider the space V = L2(R, γ(dx)) where γ(dx) = (2π)−1/2e−x
2/2, that is the

space of real-valued functions f such that, if X is a standard normal random variable we
have 1

1Tehnicality: Elements in V are not in fact functions but equivalence classes of functions equal to each
other except possibly on a set B such that

∫
B
dx = 0. Equality in this example should be understood in this

sense.
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Ef(X)2 =

∫ ∞
−∞

f(x)2γ(dx) <∞

,
with inner product

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)γ(dx).

Define the set of vectors pi(x) = xi, i = 0, 1 . . .. It can be shown that

1. the polynomials (linear combinations of pi) are dense in V in the norm metric

2. 〈f, pi〉 = 0 for all i implies f = 0, which implies the closure of span{pi} is V

3. {pi} are linearly independent and so, using the previous statement, form a basis

4. Gram-Schmidt on {pi} (without the final normalization) gives an orthogonal basis for
V given by the Hermite polynomials, which can be written succinctly as Hn(x) =
(−1)nex

2/2 dn

dxn
e−x

2/2 for n ≥ 1 and H0 = 1.

2.5 Comments on infinite-dimensional spaces

Much of these notes concerns finite-dimensional spaces. Many results, and the geometric
intuition, from such spaces extend to infinite-dimensional Hilbert spaces. But there are
some important differences. We mention just a few here, in the case where V is an infinite-
dimensional Hilbert space with countable basis {vi}∞1 .

This first example shows why V is not the span but the closure of the span of an
orthonormal basis.

Theorem For each infinite sequence of vectors {xi}∞1 ⊂ V , there exists a x0 ∈ V which is
not a finite linear combination of the {xi}.

To prove this, we may assume {xi} form an orthonormal for span{xi}, since otherwise
we could just apply Gram-Schmidt without changing the span of the set. If the span of {xi}
is in fact finite-dimensional, then the orthogonal decomposition theorem (see below) and the
fact that dimV =∞ show there must exist x0 as claimed.

If the span is infinite-dimensional we consider the closure of span{xi} to give a closed
subspace and therefore a Hilbert space inheriting the same inner product. Any span of a
finite number of xi is a closed subspace, and therefore there must be an x0 not contained in
it by the orthogonal decomposition theorem.

To be more constructive, one could consider x0 =
∑∞

1 xi/n. This is in V since it is
summable in squared norm. If x0 could be written as a finite linear combination x0 =∑k

1 αixi, say, there would exist an N such that xN is not part of the sum. By orthogonality
〈x0, xN〉 = 0. But 〈x0, xj〉 = 1/j > 0 for all j ≥ 1, a contradiction.
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Theorem The unit ball {x ∈ V | ||x|| ≤ 1} is not compact.

The proof of this second theorem follows from the fact that if {vi} form an orthonormal
basis, then the Pythagorean theorem says ||vn − vm|| =

√
2 for all n 6= m. Therefore, no

subsequence of {vi} can be Cauchy, and therefore it has no convergent subsequence.

This is in contrast to the case of finite-dimensional Euclidean spaces, where closed and
bounded sets are compact.

Theorem Every separable, infinite-dimensional Hilbert V space over C is isometrically
isomorphic to the space `2 = {x = (x1 . . .) | xi ∈ C,

∑
|xi|2 < ∞}. In other words, there

exists a bijective linear map T such that 〈Tx, Tx〉`2 = 〈x, x〉V .

Exercises

2.1 Let `p =

{
x = (x1, x2, . . . ) ∈ RN : ||x||p =

(
∞∑
i=1

|xi|p
) 1

p

<∞

}
.

1. Suppose p, q > 1 such that 1/p + 1/q = 1. For x = {xi} ∈ `p and y = {yi} ∈ `q, show∑
|xi||yi| ≤ ‖x‖p‖y‖q. (Hint: Use Young’s inequality, ab ≤ ap/p+ bq/q for a, b > 0 and

p, q as above.)

2. For p ≥ 1 and x, y ∈ `p, show ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

3. Prove || · ||p is a norm.

4. Prove that || · ||p is derived from an inner product if and only if p = 2. (Hint: Use the
parallelogram identity and a very simple example).

2.2 Prove: Every separable, infinite-dimensional Hilbert V space over C is isometrically
isomorphic to the space `2 = {x = (x1 . . .) | xi ∈ C,

∑
|xi|2 < ∞}. In other words, there

exists a bijective linear map T such that 〈Tx, Tx〉`2 = 〈x, x〉V .

Hint: Recall that V is separable if and only if it has a countable orthonormal basis {xi}∞1 .
Consider the map T (x) = (〈x, x1〉, 〈x, x2〉 . . .).

2.3 Show that the space F0 of all differentiable functions f : R→ R with df
dx

= 0 defines a
vector space.

2.4 Garcia, P.4.27 Let x =

 x1

x2

x3

 ∈ R3 and let ||x||α,β,γ = α|x1| + β|x2| + γ|x3|, where

α, β, γ > 0. Show that || · ||α,β,γ is a norm on R3, but that it is not derived from an inner
product.

2.5 Let d be a metric on a vector space V such that
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1. d(x, y) = d(x+ z, y + z)

2. d(rx, ry) = |r|d(x, y)

hold for each x, y, z ∈ V and each r ∈ R. Prove that ‖x‖ ·= d(x, 0) defines a norm on V .

2.6 Verify for yourself that the two conditions for a subspace are independent of each
other, by coming up with 2 subsets of R2: one that is closed under addition and subtraction
but NOT under scalar multiplication, and one that is closed under scalar multiplication but
NOT under addition/subtraction.

2.7 Strang, section 3.5 #17b Let V be the space of all vectors v = [c1 c2 c3 c4]T ∈ R4 with
components adding to 0: c1 + c2 + c3 + c4 = 0. Find the dimension and give a basis for V .

2.8 Let v1, v2, ..., vn be a linearly independent set of vectors in V . Prove that if n = dim(V ),
v1, v2, ..., vn form a basis for V .

2.9 If F[−1,1] is the space of all continuous functions defined on the interval [−1, 1], show

that 〈f, g〉 =
∫ 1

−1
f(x)g(x)dx defines an inner product of F[−1,1].

2.10 Parts (a) and (b) concern the space F[−1,1], with inner product 〈f, g〉 =
∫ 1

−1
f(x)g(x)dx.

(a) Show that f(x) = 1 and g(x) = x are orthogonal in F[−1,1]

(b) Construct an orthonormal basis for the subspace of F[−1,1] spanned by f(x) = 1, g(x) = x,
and h(x) = x2.

2.11 If a subspace S is contained in a subspace V, prove that S⊥ contains V ⊥.

2.12 Suppose we have have two sets of paired observations (x1, y1), . . . , (xn, yn) and let
x, y ∈ Rn be the resulting vectors of observations. The cosine similarity between these two
observations is given by

sim(x, y) := arccos

(
xTy

||x||||y||

)
i.e. sim(x, y) is a measure of the angle between x and y in Rn.

(a) Look up the formula for Pearson correlation and write it in terms of the vectors x, y.
What is the difference between Pearson correlation and cosine similarity?

(b) Give a geometric interpretation of Pearson correlation. Hint : see example 3 from Section
2.3.

2.13

1. Show that every finite-dimensional normed space V over R is topologically isomorphic
with Rn, i.e. there exists a continuous linear map T : V 7→ Rn with continuous inverse,
where Rn has the standard Euclidean norm.
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2. Show that all norms on V as above are equivalent, in the sense that if ‖xn‖1 → 0 then
‖xn‖2 → 0 for any two norms ‖ · ‖1, ‖ · ‖2.
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3 Matrices and Matrix Algebra

An m× n matrix A is a rectangular array of numbers that has m rows and n columns, and
we write:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


For the time being we’ll restrict ourselves to real matrices, so ∀ 1 ≤ i ≤ m and ∀ 1 ≤ j ≤ n,
aij ∈ R. Notice that a familiar vector x = [x1, x2, · · ·xn]T ∈ Rn is just a n × 1 matrix (we
say x is a column vector.) A 1 × n matrix is referred to as a row vector. If m = n, we
say that A is square.

3.1 Matrix Operations

Matrix addition Matrix addition is defined elementwise, i.e. A+B := C, where

cij = aij + bij

Note that this implies that A + B is defined only if A and B have the same dimensions.
Also, note that matrix addition is commutative i.e. A+B = B + A.

Scalar multiplication Scalar multiplication is also defined element-wise. If r ∈ R, then
rA := B, where

bij = raij

Any matrix can be multiplied by a scalar. Multiplication by 0 results in zero matrix, and
multiplication by 1 leaves matrix unchanged, while multiplying A by -1 results in matrix
−A, s.t. A+ (−A) = A− A = 0m×n.

You should check at this point that a set of all m × n matrices is a vector space with
operations of addition and scalar multiplication as defined above.

Matrix multiplication Matrix multiplication is trickier. Given a m× n matrix A and a
p× q matrix B, AB is only defined if n = p. In that case we have AB = C, where

cij =
n∑
k=1

aikbkj

i.e. the i, j-th element of AB is the inner product of the i-th row of A and j-th column of B,
and the resulting product matrix is m × q. See http://matrixmultiplication.xyz/ for a nice
visualization of matrix multiplication.
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You should at this point come up with your own examples of A,B s.t both AB and BA
are defined, but AB 6= BA. Thus matrix multiplication is, in general, non-commutative.

Trace We also introduce another concept here: for a square matrix A, its trace is defined

to be the sum of the entries on main diagonal(tr(A) =
n∑
i=1

aii). For example, tr(In×n) = n.

You may prove for yourself (by method of entry-by-entry comparison) that tr(AB) = tr(BA),
and tr(ABC) = tr(CAB). It’s also immediately obvious that tr(A+B) = tr(A) + tr(B).

Transpose Let A be m×n, then the transpose of A is the n×m matrix AT , s.t. aij = aTji.
Now the notation we used to define the inner product on Rn makes sense, since given two
n × 1 column vectors x and y, their inner product 〈x, y〉 is just xTy according to matrix
multiplication.

Inverse Let In×n, denote the n× n identity matrix, i.e. the matrix that has 1’s down its
main diagonal and 0’s everywhere else (in future we might omit the dimensional subscript
and just write I, the dimension should always be clear from the context). You should check
that in that case, In×nA = AIn×n = A for every n × n A. We say that n × n A, has n × n
inverse, denoted A−1, if AA−1 = A−1A = In×n. If A has inverse, we say that A is invertible.

Not every matrix has inverse, as you can easily see by considering the n×n zero matrix.
A square matrix that is not invertible is called singular or degenerate. We will assume
that you are familiar with the use of elimination to calculate inverses of invertible matrices
and will not present this material.

The following are some important results about inverses and transposes:

1. (AB)T = BTAT

Proof : Can be shown directly through entry-by-entry comparison of (AB)T and BTAT .

2. If A is invertible and B is invertible, then AB is invertible, and (AB)−1 = B−1A−1.

Proof : Exercise 3.1(a).

3. If A is invertible, then (A−1)T = (AT )−1

Proof : Exercise 3.1(b).

4. A is invertible if and only if Ax = 0 =⇒ x = 0 (we say that N(A) = {0}, where N(A)
is the nullspace of A, to be defined shortly).

Proof : Assume A−1 exists. Then,

Ax = 0

→ A−1(Ax) = A−10

→ x = 0.
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Now, assume Ax = 0 implies x = 0. Note that mulitplying A by a vector on the right
is a linear combination of the columns of A. By the assumption we get of A are linearly
independent and therefore form a basis for Rn (since there are n of them).

Consider the standard basis vectors e1 = [1, 0, · · · , 0]T , e2 = [0, 1, · · · , 0]T , ..., en =
[0, 0, · · · , 1]T . Since the columns of A for a basis, for each standard basis vector ei we
can find a vector ci such that Aci = ei.

Convince yourself that the matrix C whose columns are given by these ci is a right
inverse of A i.e. AC = I. �

Perspectives on matrix-vector multiplication There are a couple different ways to
think of multiplying a matrix times a vector. Suppose we have a matrix A ∈ Rn×d and a
vector v ∈ Rd. The result of multiplying the matrix A by the vector v on the right is a
vector i.e. Av ∈ Rn.

1. Av gives a linear combination of the columns of A. Let Aj, j = 1, . . . , d be the columns

of A. Then Av =
∑d

j=1 vjAj.

2. Av give the dot product between the rows of A and v. Let ai, i = 1, . . . , n be the rows
of A. Then the ith entry (Av)i = aTi v.

We can make similar observations for multiplying A by a vector u ∈ Rn on the left by
switching the words “row” and “column” i.e. uA is a linear combination of the rows of A.

Perspectives on matrix-matrix multiplication Suppose we have two matrices A ∈
Rn×k and B ∈ Rk×d. Let C = AB ∈ Rn×d. Denote the columns of the matrix A be given by
A1, . . . , Ak where Aj ∈ Rn. Denote the rows of A by a1, . . . , an where ai ∈ Rk. Similarly for
B (i.e. capital letter for columns, lower case letter for rows).

1. The jth column of C is given by A times the jth column of B i.e. Cj = ABj. We can
apply either of the two matrix-vector interpretations to ABj.

2. The ith row of C is given by the ith row of A times B i.e. ci = aiB. Again we can
apply the above two matrix-vector interpetations.

3. C is give by the sum of the outer products between the columns of A and the rows of
B i.e. C = A1b

T
1 + · · ·+ Akb

T
k .

3.2 Special Matrices

Symmetric Matrix A square matrix A is said to be symmetric if A = AT . If A is
symmetric, then A−1 is also symmetric (Exercise 3.2).
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Orthogonal Matrix A square matrix Q is said to be orthogonal if QT = Q−1. You
should prove that columns of an orthogonal matrix are orthonormal, and so are the rows.
Conversely, any square matrix with orthonormal columns is orthogonal. We note that or-
thogonal matrices preserve lengths and inner products:

〈Qx,Qy〉 = xTQTQy = xT In×ny = xTy.

In particular ‖Qx‖ =
√
xTQTQx = ‖x‖, which means that Q is an isometry. Also, if A,

and B are orthogonal, then so are A−1 and AB.

Idempotent Matrix We say that a square matrix A is idempotent if A2 = A.

Positive Definite Matrix We say that a square matrix A is positive definite if ∀ n× 1
vectors x 6= 0n×1, we have xTAx > 0. We say that A is positive semi-definite (or non-
negative definite if A is symmetric and ∀ n× 1 vectors x 6= 0n×1, we have xTAx ≥ 0. You
should prove for yourself that every positive definite matrix is invertible (Exercise 3.3)). One
can also show that if A is positive definite, then so is AT (more generally, if A is positive
semi-definite, then so is AT ).

These have complex matrix analogs by replacing the transpose with the Hermitian trans-
pose. In the exercises, you will show that if A is a complex matrix, non-negative definiteness
implies the matrix is Hermitian. This is why some definitions of positive definiteness for
complex matrices include the requirement that it be Hermitian. This is not true in the real
case.

Diagonal and Triangular Matrix We say that a square matrix A is diagonal if aij = 0
∀ i 6= j. We say that A is upper triangular if aij = 0 ∀ i > j. Lower triangular matrices
are defined similarly.

3.3 The Four Fundamental Spaces

Column Space and Row Space Let A be m×n. We will denote by col(A) the subspace
of Rm that is spanned by columns of A, and we’ll call this subspace the column space of
A. Similarly, we define the row space of A to be the subspace of Rn spanned by rows of A
and we notice that it is precisely col(AT ).

Nullspace and Left Nullspace Now, let N(A) = {x ∈ Rn : Ax = 0}. You should check
for yourself that this set, which we call kernel or nullspace of A, is indeed subspace of Rn.
Similary, we define the left nullspace of A to be {x ∈ Rm : xTA = 0}, and we notice that
this is precisely N(AT ).

The fundamental theorem of linear algebra states:

1. dim(col(A)) = r = dim(col(AT )). Dimension of column space is the same as dimension
of row space. This dimension is called the rank of A.
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2. col(A) = (N(AT ))
⊥

and N(A) = (col(AT ))
⊥

. The columns space is the orthogonal
complement of the left nullspace in Rm, and the nullspace is the orthogonal complement
of the row space in Rn. We also conclude that dim(N(A)) = n − r, and dim(N(AT ))
= m− r.

We will not present the proof of the theorem here, but we hope you are familiar with these
results. If not, you should consider taking a course in linear algebra (math 383).

We can see from the theorem, that the columns of A are linearly independent if and
only if the nullspace doesn’t contain any vector other than zero. Similarly, rows are linearly
independent if and only if the left nullspace doesn’t contain any vector other than zero.

Solving Linear Equations We now make some remarks about solving equations of the
form Ax = b, where A is a m × n matrix, x is n × 1 vector, and b is m × 1 vector, and
we are trying to solve for x. First of all, it should be clear at this point that if b /∈ col(A),
then the solution doesn’t exist. If b ∈ col(A), but the columns of A are not linearly inde-
pendent, then the solution will not be unique. That’s because there will be many ways to
combine columns of A to produce b, resulting in many possible x’s. Another way to see
this is to notice that if the columns are dependent, the nullspace contains some non-trivial
vector x∗, and if x is some solution to Ax = b, then x + x∗ is also a solution. Finally we
notice that if r = m < n (i.e. if the rows are linearly independent), then the columns MUST
span the whole Rm, and therefore a solution exists for every b (though it may not be unique).

We conclude then, that if r = m, the solution to Ax = b always exists, and if r = n,
the solution (if it exists) is unique. This leads us to conclude that if n = r = m (i.e. A
is full-rank square matrix), the solution always exists and is unique. The proof based on
elimination techniques (which you should be familiar with) then establishes that a square
matrix A is full-rank if and only if it is invertible.

We now give the following results:

1. rank(ATA) = rank(A). In particular, if rank(A) = n (columns are linearly indepen-
dent), then ATA is invertible. Similarly, rank(AAT ) = rank(A), and if the rows are
linearly independent, AAT is invertible.

Proof : Exercise 3.5.

2. N(AB) ⊃ N(B)

Proof : Let x ∈ N(B). Then,

(AB)x = A(Bx) = A0 = 0,

so x ∈ N(AB). �

3. col(AB) ⊂ col(A), the column space of product is subspace of column space of A.

Proof : Note that
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col(AB) = N((AB)T )⊥ = N(BTAT )⊥ ⊂ N(AT )⊥ = col(A). �

4. col((AB)T ) ⊂ col(BT ), the row space of product is subspace of row space of B.

Proof : Similar to (3).

3.4 Sample Covariance matrix

Suppose we have a data matrix X ∈ Rn×d with n observations and d variables. Let
x1, . . . , xn ∈ Rn be the observations (rows of X). We define the sample covariance ma-
trix matrix S ∈ Rd×d by

S :=
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T

where x̄ = 1
n

∑n
i=1 xi ∈ Rd. Note the ith diagonal entry, Sii is the sample variance of the ith

variable. The off diagonal entry Sij is the sample covariance between the ith variable and
jth variable.

First we state some facts about the sample covariance matrix.

1. S is symmetric.

2. S is positive semi-definite.

proof : Let A ∈ Rd be some matrix given by A =
∑n

i=1 yiy
T
i where yi ∈ Rd. Note S is

in this form with yi = xi − x̄. Let v ∈ Rd by any vector.

vTAv = vT

(
n∑
i=1

yiy
T
i

)
v (1)

=
n∑
i=1

(vTyi)(y
T
i v) (2)

=
n∑
i=1

(vTyi)
2 ≥ 0. (3)

Thus any matrix in the form of A is positive semi definite

3. Let P := span(x1 − x̄, . . . , xn − x̄) ⊆ Rd subspace spanned by the mean centered
observations and r := dim(P ) be the rank of this subspace. Then rank(S) = r ≤
minn, d. Note if we are in the high dimensional, low sample size setting (i.e. n < d)
the S is automatically not invertible. On the other hand, if n > d and the data are
randomly generated then S is almost surely invertible.

4. We can write S in a couple different ways which may be useful in different contexts.
Let Xc ∈ Rn×d be the data matrix after the columns have mean centered (i.e. the ith
row of Xc is given by xi − x̄) and 1n ∈ Rn be the vector of ones.
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S =
1

n− 1

(
n∑
i=1

xix
T
i − nx̄x̄T

)

=
1

n− 1

(
XTX − 1

n
XT1n1TnX

)
=

1

n− 1
XT
c Xc

Exercises

3.1 Prove the following results:

(a) If A is invertible and B is invertible, then AB is invertible, and (AB)−1 = B−1A−1

(b) If A is invertible, then (A−1)T = (AT )−1

3.2 Let A,B ∈ Rn×n be orthogonal matrices. Is A+B orthogonal?

3.3 Show that if A is symmetric, then A−1 is also symmetric.

3.4 Show that any positive definite matrix A is invertible (think about nullspaces).

3.5 Horn & Johnson 1.2.2 For A : n× n and invertible S : n× n, show that tr(S−1AS) =
tr(A). The matrix S−1AS is called a similarity of A.

3.6 Show that rank(ATA) = rank(A). In particular, if rank(A) = n (columns are linearly
independent), then ATA is invertible. Similarly, show that rank(AAT ) = rank(A), and if the
rows are linearly independent, AAT is invertible. (Hint: show that the nullspaces of the two
matrices are the same).

3.7 Linear regression takes a data matrix X ∈ Rn×d (n observations and d variables) and a
vector of coefficients β ∈ Rd then outputs a prediction vector Ŷ = Xβ ∈ Rn. Explain what is
happening with the observations/variables of X using the two perspectives on matrix-vector
multiplication.

3.8 Let A ∈ Rn×d and define the Frobenius norm by ‖A‖F =
√
tr(ATA). Show this is a

norm.

3.9 Show S can be written in the three different ways given in fact 4 in section 3.4.

3.10 Suppose d > n and we have a matrix A ∈ Rd×d given by A =
∑n

i=1 yiy
T
i + βD where

β > 0 is a constant and D ∈ Rd×d is a diagonal matrix with strictly positive entries. Show
that A is positive definite (i.e. for all v 6= 0, vTAv > 0). Argue why this must mean A is
invertible.

Now read Section 4.3.1 on regularized discriminant analysis from Elements of Statisti-
cal Learning (PDF available at https://web.stanford.edu/∼hastie/Papers/ESLII.pdf). Pay
particular attention to equations 4.13 and 4.14.
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4 Projections and Least Squares Estimation

4.1 Projections

In an inner product space, suppose we have n linearly independent vectors a1, a2, . . . , an
in Rm, and we want to find the projection of a vector b in Rm onto the space spanned
by a1, a2, . . . , an, i.e. to find some linear combination x1a1 + x2a2 + . . . + xnan = b∗, s.t.
〈b∗, b− b∗〉 = 0. It’s clear that if b is already in the span of a1, a2, . . . , an, then b∗ = b (vector
just projects to itself), and if b is perpendicular to the space spanned by a1, a2, . . . , an, then
b∗ = 0 (vector projects to the zero vector).

Hilbert Projection Theorem Assume V is a Hilbert space (complete inner product
space) and S is a closed convex subset of V . For any v ∈ V , there exist an unique y in S s.t.

y = arg min
x∈S
‖v − x‖

The vector y is called the projection of the vector v onto the subset S.
Proof : Let d

·
= inf

s∈S
||v− s||, and let {yn} ⊆ S be a sequence such that ||yn− v|| → d. In

order to see that {yn} is Cauchy, apply the Parallelogram Law to un
·

= v−yn and wm
·

= ym−v
to see that

||ym − yn||2 + ||ym + yn − 2v||2 = 2||ym − v||2 + 2||v − yn||2.
Rearranging the previous identity,

||ym − yn||2 = 2||ym − v||2 + 2||v − yn||2 − ||ym + yn − 2v||2

= 2||ym − v||2 + 2||v − yn||2 − 4

∣∣∣∣∣∣∣∣ym + yn
2

− v
∣∣∣∣∣∣∣∣2 .

Since ym, yn ∈ S and S is convex, ym+yn
2
∈ S, and therefore

∣∣∣∣ym+yn
2
− v
∣∣∣∣2 ≥ d2, so

||ym − yn||2 ≤ 2||ym − v||2 + 2||v − yn||2 − 4d2 → 0.

Since V is complete , {yn} is Cauchy, and S is closed, there is some y ∈ S such that yn → y.
Additionally x 7→ ||x|| is continuous, so

||v − y|| = lim
n→∞

||v − yn|| = d.

In order to show that the y is unique, suppose that there is some projection, z, of v onto S
such that y 6= z. Consider the sequence

{zn} = {y, z, y, z, . . . },

and note that lim
n→∞

||zn− v|| = d (in particular, ||zn− v|| = d for all n ≥ 1), so {zn} must be

Cauchy, which is a contradiction, since {zn} is not convergent. �

Example: If the set S = {x|||x||2 ≤ 1} then the projection is given by x
max(1,||x||) .
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Corollary: Assume that V is as above, and that S is a closed subspace of V . Then s∗ is
the projection of v ∈ V onto S if and only if 〈v − s∗, s〉 = 0 ∀s ∈ S.

Proof: Let v ∈ V , and assume that s∗ is the projection of v onto S. The result holds
trivialy if s = 0 so assume s 6= 0. Since S is a subspaces, s∗ − ts ∈ S. By the Projection
Theorem for all s ∈ S the function fs(t) = ‖v−s∗+ ts‖2 has a minimum at t = 0. Rewriting
this function we see

fs(t) = ‖v − s∗ + ts‖2

= 〈v − s∗ + ts, v − s∗ + ts〉
= 〈ts, ts〉+ 2〈v − s∗, ts〉+ 〈v − s∗, v − s∗〉
= t2‖s‖2 + 2t〈v − s∗, s〉+ ‖v − s∗‖2.

Since this is a quadratic function of t with positive quadratic coefficient, the minimum must
occur at the vertex, which implies 〈v − s∗, s〉 = 0.

For the opposite direction, note first that the function fs(t) will still be minimized at
t = 0 for all s ∈ S. Then for any s′ ∈ S take s ∈ S such that s = s∗ − s′. Then taking t = 1
it follows that

‖v − s∗‖ = fs(0) ≤ fs(1) = ‖v − s∗ + s∗ − s′‖ = ‖v − s′‖.

Thus by s∗ is the projection of v onto S. �

The following facts follow from the Projection Theorem and its Corollary.
Fact 1: The projection onto a closed subspace S of V , denoted by PS, is a linear operator.

Proof: Let x, y ∈ V and a, b ∈ R. Then for any s ∈ S

〈ax+ by − aPSx− bPSy, s〉 = 〈a(x− PSx), s〉+ 〈b(y − PSy), s〉
= a〈x− PSx, s〉+ b〈y − PSy, s〉
= a · 0 + b · 0 = 0.

Thus by the Corollary PS(ax+ by) = aPSx+ bPSy, and PS is linear. �

Fact 2: Let S be a closed subspace of V . Then every v ∈ V can be written uniquely as the
sum of s1 ∈ S and t1 ∈ S⊥.

Proof: That V ⊂ S+S⊥ follows from the Corollary and taking s1 = PSv and t1 = v−PSv
for any v ∈ V . To see that this is unique assume that s1, s2 ∈ S and t1, t2 ∈ S⊥ are such
that

s1 + t1 = v = s2 + t2.

Then s1 − s2 = t2 − t1, with s1 − s2 ∈ S and t2 − t1 ∈ S⊥, since each is a subspace of V .
Therefore s1 − s2, t2 − t1 ∈ S ∩ S⊥ which implies

s1 − s2 = t2 − t1 = 0 or s1 = s2 and t1 = t2. �
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Fact 3: Let S and V be as above. Then for any x, y ∈ V , ‖x− y‖ ≥ ‖PSx− PSy‖.

Proof: First for any a, b ∈ V ,

‖a‖2 = ‖a− b+ b‖2 = 〈a− b+ b, a− b+ b〉
= 〈a− b, a− b+ b〉+ 〈b, a− b+ b〉
= 〈a− b, a− b〉+ 2〈a− b, b〉+ 〈b, b〉
= ‖a− b‖2 + ‖b‖2 + 2〈a− b, b〉.

Taking a = x− y and b = PSx−PSy, Fact 1 and the Corollary imply that 〈a− b, b〉 = 0 and
thus

‖x− y‖2 = ‖a‖2 = ‖a− b‖2 + ‖b‖2 ≥ ‖b‖2 = ‖PSx− PSy‖2. �

Now let us focus on the case when V = Rm and S = span{a1, . . . , an} where a1, . . . , an
are linearly independent and A = [a1 . . . an]

Fact 4: Suppose a1, . . . , an are orthonormal (i.e. mutually orthogonal, unit norm). Then
the projection matrix is given by PS = AAT =

∑n
i=1 aia

T
i .

Fact 5: In general (i.e. the ai are linearly independent, but not necessarily orthonormal)
the projection matrix is given by PS = P = A(ATA)−1AT .

Proof: First S = span{a1, . . . , an} = col(A) and b ∈ Rm. Then Pb ∈ S implies that
there exists a x ∈ Rn such that Ax = Pb. The Corollary to the Projection Theorem states
that b−Ax ∈ col(A)⊥. The Theorem on fundemental spaces tells us that col(A)⊥ = N(AT )
and thus

AT (b− Ax) = 0⇒ ATAx = AT b

The linear independence of {a1, . . . , an} implies that rank(A) = n, which by previous exer-
cise means ATA is invertible, so x = (ATA)−1AT b and thus Pb = Ax = A(ATA)−1AT b. �

We follow up with some properties of projection matrices P :

1. P is symmetric and idempotent (what should happen to a vector if you project it and
then project it again?).

Proof : Exercise 4.1(a).

2. I − P is the projection onto orthogonal complement of col(A) (i.e. the left nullspace
of A)

Proof : Exercise 4.1(b).
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3. Given any vector b ∈ Rm and any subspace S of Rm, b can be written (uniquely) as
the sum of its projections onto S and S⊥

Proof : Assume dim(S) = q, so dim(S⊥) = m − q. Let AS = [a1 a2 ...aq] and AS⊥ =
[aq+1 ... am] be such that a1, ..., aq form a basis for S and aq+1, ..., am form a basis for
S⊥. By 2, if PS is the projection onto col(AS) and PS⊥ is the projection onto col(AS⊥),
∀b ∈ Rm

PS(b) + PS⊥(b) = PS(b) + (I − PS)b = b.

As columns of AS and AS⊥ are linearly independent, the vectors a1, a2, ..., am form a
basis of Rm. Hence,

b = PS(b) + PS⊥(b) = c1a1 + ...+ cqaq + cq+1aq+1 + ...+ cmam

for unique c1, ..., cm. �

4. P (I − P ) = (I − P )P = 0 (what should happen to a vector when it’s first projected
to S and then S⊥?)

Proof : Exercise 4.1(c).

5. col(P ) = col(A)

Proof : Exercise 4.1(d).

6. Every symmetric and idempotent matrix P is a projection.

Proof : All we need to show is that when we apply P to a vector b, the remaining part
of b is orthogonal to col(P ), so P projects onto its column space. Well, P T (b− Pb) =
P T (I − P )b = P (I − P )b = (P − P 2)b = 0b = 0. �

7. Let a be a vector in Rm. Then a projection matrix onto the line through a is P = aaT

‖a‖2 ,

and if a = q is a unit vector, then P = qqT .

8. Combining the above result with the fact that we can always come up with an or-
thonormal basis for Rm (Gram-Schmidt) and with the fact about splitting vector into
projections, we see that we can write b ∈ Rm as q1q

T
1 b+ q2q

T
2 b+ . . .+ qmq

T
mb for some

orthonormal basis {q1, q2, . . . , qm}.

9. If A is a matrix of rank r and P is the projection on col(A), then tr(P ) = r.

Proof : Exercise 4.1(e).

4.2 Applications to Statistics: Least Squares Estimator

Suppose we have a linear model, where we model some response as

yi = xi1β1 + xi2β2 + . . .+ xipβp + εi,
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where xi1, xi2, . . . , xip are the values of explanatory variables for observation i, εi is the error
term for observaion i that has an expected value of 0, and β1, β2, . . . , βp are the coefficients
we’re interested in estimating. Suppose we have n > p observations. Then writing the above
system in matrix notation we have Y = Xβ+ ε, where X is the n× p matrix of explanatory
variables, Y and ε are n× 1 vectors of observations and errors respectively, and p× 1 vector
β is what we’re interested in. We will furthermore assume that the columns of X are linearly
independent.

Since we don’t actually observe the values of the error terms, we can’t determine the
value of β and have to estimate it. One estimator of β that has some nice properties (which
you will learn about) is least squares estimator (LSE) β̂ that minimizes

n∑
i=1

(yi − ỹi)2,

where ỹi =

p∑
i=1

β̃jxij. This is equivalent to minimizing ‖Y − Ỹ ‖2 = ‖Y −Xβ̃‖2. It follows

that the fitted values associated with the LSE satisfy

Ŷ = arg min
Ỹ ∈col(X)

‖Y − Ỹ ‖2

or that Ŷ is the projection of Y onto col(X). It follows then from Fact 4 that the the fitted
values and LSE are given by

Ŷ = X(XTX)−1XTY = HY and β̂ = (XTX)−1XTY.

The matrix H = X(XTX)−1XT is called the hat matrix. It is an orthogonal projection that
maps the observed values to the fitted values. The vector of residuals e = Y −Ŷ = (I−H)Y
are orthogonal to col(X) by the Corollary to the Projection Theorem, and in particular
e ⊥ Ŷ .

Finally, suppose there’s a column xj in X that is perpendicular to all other columns.
Then because of the results on the separation of projections (xj is the orthogonal comple-
ment in col(X) of the space spanned by the rest of the columns), we can project b onto the
line spanned by xj, then project b onto the space spanned by rest of the columns of X and
add the two projections together to get the overall projected value. What that means is that
if we throw away the column xj, the values of the coefficients in β corresponding to other
columns will not change. Thus inserting or deleting from X columns orthogonal to the rest
of the column space has no effect on estimated coefficients in β corresponding to the rest of
the columns.

Recall that the Projection Theorem and its Corollary are stated in the general setting
of Hilbert spaces. One application of these results which uses this generality and arrises in
STOR 635 and possibly 654 is the interpretation of conditional expectations as projections.
Since this application requires a good deal of material covered in the first semester courses,
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i.e measure theory and integration, an example of this type will not be given. Instead an
example on a simpler class of functions will be given.

Example: Let V = C([−1, 1]) with ‖f‖2 = 〈f, f〉 =
∫ 1

−1
f(x)f(x)dx. Let h(x) = 1,

g(x) = x and S = span{h, g} = {all linear functions}. What we will be interested is
calculating PSf where f(x) = x2.

From the Corollary we know that PSf is the unique linear function that satisfies 〈f −
PSf, s〉 = 0 for all linear functions s ∈ S. By previous (in class ) exercise finding PSf requires
finding constants a and b such that

〈x2 − (ax+ b), 1〉 = 0 = 〈x2 − (ax+ b), x〉.

First we solve

0 = 〈x2 − (ax+ b), 1〉 =

∫ 1

−1

(x2 − ax− b) · 1 dx

=

(
x3

3
− ax2

2
− bx

)∣∣∣∣1
−1

=

(
1

3
− a

2
− b
)
−
(
−1

3
− a

2
+ b

)
=

2

3
− 2b⇒ b =

1

3
.

Next,

0 = 〈x2 − (ax+ b), x〉 =

∫ 1

−1

(x2 − ax− b) · x dx

=

∫ 1

−1

x3 − ax2 − bx dx

=
x4

4
− ax3

3
− bx2

2
|1−1

=

(
1

4
− a

3
− b

2

)
−
(

1

4
+
a

3
− b

2

)
=
−2a

3
⇒ a = 0.

Therefore PSf = ax+ b = 1
3
�

Exercises

4.1 Prove the following properties of projection matrices:

(a) P is symmetric and idempotent.
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(b) I − P is the projection onto orthogonal complement of col(A) (i.e. the left nullspace of
A)

(c) P (I − P ) = (I − P )P = 0

(d) col(P ) = col(A)

(e) If A is a matrix of rank r and P is the projection on col(A), tr(P ) = r.

4.2 Show that the best least squares fit to a set of measurements y1, · · · , ym by a horizontal
line — in other words, by a constant function y = C — is their average

C =
y1 + · · ·+ ym

m

In statistical terms, the choice ȳ that minimizes the error E2 = (y1 − y)2 + · · · + (ym − y)2

is the mean of the sample, and the resulting E2 is the variance σ2.
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5 Linear functionals, riesz representation and hyper-

plane separation

5.1 Linear functionals

Linear functionals, dual space of a normed space The dual space of a real normed
space V , denoted V ∗, is the real vector space of continuous linear functionals, i.e. maps
` : V 7→ R that are linear and continuous in the topology given by the norm metric. In fact,
it can be shown that

V ∗ = {` : V 7→ R | ∃ C ∈ (0,∞) such that |`(x)| ≤ C‖x‖ ∀x ∈ V }
In other words, every continuous linear functional on a normed space is Lips-

chitz.

Dual spaces can be defined for arbitrary vector spaces endowed with a topology in which
linear operations are continuous. We focus on normed spaces here, and really just on inner
product spaces. Often one will consider complex-valued linear functionals, in which case V ∗

is a vector space over the complex numbers, but we stick to the real case here. All of the
results presented here still hold in the complex case.

Example: Suppose that V = C([−1, 1] : R), the space of real-valued continuous functions
defined on [−1, 1]. Then the linear transformation φ : V → R given by

φ(f) =

∫ 1

−1

f(x)dx,

is a continuous linear functional. In fact, for any bounded continuous function g

φg(f) =

∫ 1

−1

f(x)g(x)dx,

is a continuous linear functional.

The following theorems show that any linear functional on a Hilbert space can be ex-
pressed in terms of the inner product. We prove the finite-dimensional case and leave the
infinite-dimensional one as an exercise.

The Riesz Representation Theorem (finite dimension): Let V be a finite dimensional
inner product space and let φ ∈ V ∗. Then there is a unique y ∈ V such that

φ(x) = 〈y, x〉,

for each x ∈ V . Additionally, if v1, v2, . . . , vn is an orthonormal basis of V , then

y =
n∑
i=1

φ(vi)vi.

We refer to y as the Riesz vector for φ.
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Proof. Let x ∈ V and note that there are scalars r1, r2, . . . , rn such that

x =
n∑
i=1

rivi.

Using the basic properties of orthornormal bases and inner products we can see that

ri =
n∑
j=1

rj〈vi, vj〉 =

〈
vi,

n∑
i=1

rjvj

〉
= 〈vi, x〉,

so

x =
n∑
i=1

〈vi, x〉vi.

Thus if we define y =
n∑
i=1

φ(vi)vi,

φ(x) = φ

(
n∑
i=1

〈vi, x〉vi

)
=

n∑
i=1

〈vi, x〉φ(vi) =

〈
n∑
i=1

φ(vi)vi, x

〉
= 〈y, x〉.

Recall that the map (λ1 . . . λn) 7→ x =
∑n

1 λixi is one-to-one and onto, i.e. x is uniquely
determined by the coefficients in the basis representation, and every x ∈ V can be written
this way for some vector of coefficients. Uniqueness of y follows.

Theorem: Dual basis Say V is an inner product space over R of dimension n. If {vi}n1
is an orthonormal basis for V ,

• There exists a unique set `1 . . . `n ∈ V ∗ such that `i(vj) = δij, where δij = 1 if i = j
and 0 otherwise.

• `1, . . . `n is a basis for V ∗, so that in particular V and V ∗ have the same dimension.

Proof. Define `i(x) = 〈vi, x〉 for all x. These maps are continuous linear functionals by the
Cauchy-Schwartz inequality. The first statement is then a consequence of orthonormality.

We must check that `i, i = 1 . . . n are linearly independent and span V ∗. That each
φ ∈ V ∗ is a linear combination of {`i} was shown in the previous proof. To check linear
independence we must show that

n∑
1

αi`i(x) = 0 ∀ x =⇒ αi = 0, i = 1 . . . n

For such αi, by definition of `i we have
∑n

1 αi`i(x) = 〈
∑n

1 αivi, x〉 = 0 for all x. This
implies

∑n
1 αivi = 0, which shows αi = 0 for all i since {vi} is a basis.

In the example above V is not finite dimensional, so the theorem above does not apply.
However, there is an analogous result for infinite dimensional inner product spaces, proven
as an exercise below.
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5.2 Hyperplane separation

The following results are stated for finite-dimensional vector spaces over the reals. However,
they have analogs in very general linear spaces. See Lax, Functional Analysis, for example.

Theorem (Hyperplane separation V1) Suppose U, V ⊂ Rn are non-empty convex sets,
at least one of which is open. There exists a non-zero linear functional ` and c ∈ R such that

`(x) ≤ c ≤ `(y) ∀ x ∈ U, y ∈ V

Theorem (Hyperplane separation V2) Suppose U ⊂ Rn is a non-empty closed convex
set. If x0 6∈ U , there exists a non-zero linear functional ` and c1, c0 ∈ R such that

`(x) < c1 < c0 < `(x0) ∀ x ∈ U

By the Riesz representation theorem, we could equivalently have written the results above
in terms of `(x) = 〈v, x〉 for some vector v. There are several other versions of hyperplane
separation theorems, including analogous statements for very general vector spaces. See Lax.

For hyperplanes in Rn, we note the following facts about the affine space given by the
hyperplane associated with a vector v and constant c, denoted here H = {x | 〈v, x〉 = c}

• H is a convex set, and vectors along the surface of H are given by x1−x0 for x1, x0 ∈ H.
If c = 0, H is a subspace.

• v/||v|| is the unit normal to H, that is if x0, x1 ∈ H then 〈x1 − x0, v〉 = 0

• To determine the shortest distance d(x,H) from any point x to H, we take an arbi-
trary point x0 ∈ H and compute the length of the projection of x − x0 onto v, which
is perpendicular to H by the previous statement.

Recall the projection of x− x0 onto v is 〈x− x0, v〉 v/||v||2, and therefore

d(x,H) = ||〈x− x0, v〉 v/||v||2|| =
|〈x, v〉 − c |
||v||

Notice this does not depend on the point x0 chosen.

Example: Separating hyperplanes for classification This example comes from Hastie,
chapter 4.

Suppose you have k data vectors xi ∈ Rd and associated two-class labels yi ∈ {−1, 1}.
If the data for vectors in each class can be separated by a hyperplane, we may predict the
class label for a new observation x∗ based on the region it lies in relative to the hyperplane.
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Suppose I ⊂ {1 . . . k} is the index set for data with class label 1. We consider the closed
convex hulls of the points xi, i ∈ I and xj, j ∈ Ic. These sets are compact. If they are
disjoint, by adapting the theorems above we can show there exists a hyperplane separating
them. In fact, there could be infinitely many.

Which separating hyperplane do we chose for our classification model? This is the
question resolved by maximal margin (or optimal) separating hyperplane problem.
Specifically, we look for a solution to

max
v,c, ||v||=1

M such that yi(〈xi, v〉 − c) ≥M ∀i

As seen above, if v is normalized to length one, 〈xi, v〉− c gives the signed distance of xi
from the hyperplane given by 〈x, v〉 = c. Thus the problem above seeks a hyperplane such
that data in class 1 are on one side of the plane, data in class −1 are on the other side of
the hyperplane, such that the distance from the data to the plane is maximized. This is a
convex optimization problem solved via Lagrange multipliers.

If, however, the data cannot be separated by a hyperplane, we may use a reformulation
that allows some points to be misclassified up to a level of error. This method is called a
linear Support Vector Machine. See Hastie for details.

Exercises

5.1 Garcia P.5.16 Let V = {p ∈ C([0, 1] : R) : p(x) = ax3 + bx2 + cx+d for some a, b, c, d ∈
R} be the space of polynomials of degree three or less defined on [0, 1]. Recall the inner
product on V given by

〈p, q〉 =

∫ 1

0

p(x)q(x)dx

for each p, q ∈ V .

1. Consider the map φ : V → R given by

φ(p) =

∫ 1

0

√
xp(x)dx

(a) Show that φ is a continuous linear functional.

(b) Find the Riesz vector for φ. You do not need to find the coefficients of the Riesz
vector (polynomial) explicitly. See the hint.

Hint : Find a basis for V , then note you need only show the identity in the riesz
representation theorem for basis elements. Set up a linear system of equations
and show it can be solved, for example using criteria for invertibility given in the
chapters below. You do not need to actually solve it, however.
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5.2 In this question, you will prove the Riesz representation for real Hilbert spaces V .

We may assume the linear functional φ 6= 0, since otherwise we have φ(x) = 〈0, x〉 for all
x ∈ V .

1. Let φ be a continuous linear functional on V , and write Y = {x ∈ V |φ(x) = 0} for its
nullspace.

Show Y is a subspace of V that is closed, i.e. such that for xn ∈ Y with ‖xn− x‖ → 0
for some x ∈ V , then x ∈ Y .

2. Show its orthogonal complement Y ⊥ is one-dimensional. (Hint: Use the previous
question and the orthogonal decomposition theorem to show there exists a vector z
such that φ(z) 6= 0. Use the linearity of φ to find an explicit decomposition for any
x ∈ V of the form x = z1 + z2 where z1 ∈ Y . Use the uniqueness part of the
decomposition theorem to show z2 ∈ Y ⊥ and z2 ∈ span(z).

3. Take z, z2 ∈ Y ⊥ as in the previous question. Find a c ∈ R such that < cz, z >= `(z).
Argue that this, and the previos question, give the result.

5.3 Let A be an m× n real matrix and define K = {y ∈ Rm |Ax = y, x ≥ 0} where the
statement x ≥ 0 for x ∈ Rn is evaluated component-wise.

1. Show K is a closed, convex set.

2. Show that exactly one of the following two statements holds : For fixed y ∈ Rm

non-zero,

(i) There exists a solution x ≥ 0 to the equation Ax = y

(ii) There exists a v ∈ Rm such that vTA ≤ 0 and 〈v, y〉 > 0.

Hint: Use the hyperplane separation theorem V2.
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6 Matrix Decompositions

We will assume that you are familiar with LU and QR matrix decompositions. If you are
not, you should look them up, they are easy to master. We will in this section restrict
ourselves to eigenvalue-preserving decompositions.

6.1 Determinants

Often in mathematics it is useful to summarize a multivariate phenomenon with a single
number, and the determinant is an example of this. It is only defined for square matrices. We
will assume that you are familiar with the idea of determinants, and specifically calculating
determinants by the method of cofactor expansion along a row or a column of a square
matrix. Below we list the properties of determinants of real square matrices. The first 3
properties are defining, and the rest are established from those three properties. In fact, the
operation on square matrices which satisfies the first 3 properties must be a determinant.

1. det(A) depends linearly on the first row.

det


ra11 + sa′11 ra12 + sa′12 . . . ra1n + sa′1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 =

r det


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 + s det


a′11 a′12 . . . a′1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

.

2. Determinant changes sign when two rows are exchanged. This also implies that the
determinant depends linearly on EVERY row, since we can exhange rowi with row 1,
split the determinant, and exchange the rows back, restoring the original sign.

3. det(I) = 1

4. If two rows of A are equal, det(A) = 0 (why?)

5. Subtracting a multiple of one row from another leaves determinant unchanged.

Proof : SupposeA =
[
a′1, · · · , a′i, · · · , a′j, · · · , a′n

]′
, Ã =

[
a′1, · · · , a′i − ra′j, · · · , a′j, · · · , a′n

]T
.

Then,

det(Ã) = det(
[
a′1, · · · , a′i, · · · , a′j, · · · , a′n

]′
)− rdet

[
a′1, · · · , a′j, · · · , a′j, · · · , a′n

]T
= det(A) + 0 = det(A)

�

6. If a matrix has a zero row, its determinant is 0. (why?)
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7. If a matrix is triangular, its determinant is the product of entries on main diagonal

Proof: Exercise 6.1.

8. det(A) = 0 if and only if A is not invertible (proof involves ideas of elimination)

9. det(AB) = det(A)det(B). In particular, if A is inversible, det(A−1) = 1
det(A)

.

Proof : Suppose det(B) = 0. Then B is not invertible, and AB is not invertible (recall

(AB)−1 = B−1A−1, therefore det(AB) = 0. If det(B) 6= 0, let d(A) = det(AB)
det(B)

. Then,

(1) For A∗ = [a∗11, a
∗
12, · · · , a∗1n] ∈ Rn, let Ai be the ith row of A, r ∈ R, and A∗ be the

matrix A but with its first row replaced with A∗. Then,

d


 rA1 + A∗

...
An


 = det


 rA1 + A∗

...
An

B
 (det(B))−1

=

det


 (rA1 + A∗)B

...
AnB




det(B)

=

det


 rA1B

...
AnB


+ det


 A∗B

...
AnB




det(B)

=
r · det (AB) + det (A∗B)

det(B)

= r · d(A) + d(A∗).

Using the same argument for rows 2, 3, . . . , n we see that d(·) is linear for each row.

(2) Let Ai,j be the matrix A with rows i and j interchanged, and WLOG assume i < j.
Then

d(Ai,j) =

det





A1
...
Aj
...
Ai
...
An


B


det(B)

=

det





A1B
...

AjB
...

AiB
...

AnB




det(B)

=
det ((AB)i,j)

det(B)
=
−det(AB)

det(B)
= −d(A).
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(3) d(I) = det(IB)/det(B) = det(B)/det(B) = 1.

So conditions 1-3 are satisfied and therefore d(A) = det(A). �

10. det(AT ) = det(A). This is true since expanding along the row of AT is the same as
expanding along the corresponding column of A.

6.2 Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Given a square n × n matrix A, we say that λ is an
eigenvalue of A, if for some non-zero x ∈ Rn we have Ax = λx. We then say that x is an
eigenvector of A, with corresponding eigenvalue λ ∈ C. Note that even of the entries of A
are real, λ may be complex.

Eigenvalue/vectors methods show up all over the place in statistics e.g. see Eigenprob-
lems in Pattern Recognition (http://www.cs.utah.edu/∼piyush/teaching/eig book04.pdf).

Note that

Ax = λx⇐⇒ (λI − A)x = 0⇐⇒ λI − A is not invertible⇐⇒ det(λI − A) = 0

The upshot is: if we write p(λ) = det(λI − A) then p is a polynomial whose roots are
the eigenvalues of A. Every polynomial has at least one distinct (possibly complex) root
therefore, every matrix has at least one eigenvalue. This polynomial characterization of
eigenvalues can also be used to show the following theorem.

Theorem:

1. The determinant is the product of the eigenvalues i.e. det(A) =
n∏
i=1

λi

2. The trace is the sum of the eigenvalues i.e. tr(A) =
n∑
i=1

λi

3. det(λI − A) = 0 if and only if λ is an eigenvalue of A.

Proof. The explanation for 3. is above. Some details will be excluded, but the basic argument
is as follows:

1. Using the cofactor expansion method of calculating p(t) = det(tI − A), note the fol-
lowing:

(a) p(t) is a degree n polynomial, and the coefficient of tn is 1.

(b) The coefficient of tn−1 in p(t) is −
n∑
i=1

aii.

(c) Use (a) to see that p(0) = r0, and thus that p(0) = det(0I − A) = (−1)ndet(A).
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2. Observe that p(t) can be factored as p(t) =
n∏
i=1

(t−λi), where each λi is a (not necessarily

distinct) eigenvalue of A.

3. Expand the expression in 2. and use 1. (c) to show that tr(A) =
n∑
i=1

λi and det(A) =

n∏
i=1

λi.

�

Let’s consider how to compute the eigenvalues/vectors of a matrix. First compute the
roots of p defined above to find the eigenvalues. Given an eigenvalue λ we can find an eigen-
vector v by finding a basis for the kernel of A−λI. In other words, computing the eigenval-
ues/vectors of A requires two subroutines: finding the roots of a polynomial and finding the
basis for a kernel. The latter can be solved using row reduction (see standard linear algebra
references). The former, finding the roots of an arbitrary polynomial, is harder. We can find
the roots of a polynomial easily in special cases (e.g. if n = 2 then use the quadratic formula)
however the general case is not so nice. A result from Galois theory (Abel-Ruffini theorem)
says finding the exact roots of an arbitrary polynomial of degree ≥ 5 is essentially impossible.

Theorem 25.1 from Numerical linear algebra, Trefethen: For any m ≥ 5, there is a
polynomial p(z) of degree m with rational coefficients that has a real root p(r) = 0 with the
property that r cannot be written using any expression involving rational numbers, addition,
subtraction, multiplication, division and kth roots.

This theorem implies “there could be no computer program that would produce the exact
roots of an arbitrary polynomial in a finite number of steps.” The same must therefore hold
for eigenvalues since one can show computing eigenvalues is equivalent to finding roots of a
polynomial. The upshot is that any eigenvalue solver must be iterative and approx-
imate. Computing eigenvalues/vectors is an important and well studied problem e.g. see
Numerical linear algebra, by Trefethen for (many) algorithms which solve this problem.

You should be able to see that the eigenvalues of A and AT are the same (why? Do the
eigenvectors have to be the same?), and that if x is an eigenvector of A (Ax = λx), then so
is every multiple rx of x, with same eigenvalue (Arx = λrx). In particular, a unit vector in
the direction of x is an eigenvector.

If A is an n× n matrix, then its spectrum is the set

σA = {λ : λ is an eigenvalue of A}.

We are often interested in determining exactly what the spectrum of a particular matrix
is. However, sometimes it is enough to find a region containing σA. The following result,
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which is stated for matrices with complex entries, provides the means to find a region con-
taining σA.

Theorem: Let A ∈ Cn×n. Then

σA ⊆
n⋃
i=1

{
z ∈ C : |z − aii| ≤

∑
j 6=i

|aij|

}
.

Proof. Let λ ∈ σA be an eigenvalue with corresponding eigenvector x. Define another eigen-
vector, y, corresponding to λ such that yi = 1 and max

j 6=i
|yj| ≤ 1. Since Ay = λy,

λ =
n∑
j=1

aijyj =
n∑
j 6=i

aijyj + aiiyi =
n∑
j 6=i

aijyj + aii,

and

|λ− aii| =

∣∣∣∣∣∑
j 6=i

aijyj

∣∣∣∣∣ ≤∑
j 6=i

|aij|.

Thus λ ∈

{
z ∈ C : |z − aii| ≤

∑
j 6=i
|aij|

}
.

�

Recall that if A is an n × n matrix, then it represents a linear transformation from be-
tween two finite dimensional vector spaces, and that A has at least one eigenvalue. The
following example shows that the same does not hold if the spaces are infinite dimensional -
in particular, linear transformations on infinite dimensional vector spaces need not have any
eigenvalues.

Example: Let φ : C([0, 1] : R)→ C([0, 1] : R) be given by

φ(f)(x) =

∫ x

0

f(y)dy.

Theorem : Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof : Suppose that there are only two distinct eigenvalues (A could be 2 × 2 or it
could have repeated eigenvalues), and let r1x1 + r2x2 = 0. Applying A to both sides we have
r1Ax1 + r2Ax2 = A0 = 0 =⇒ λ1r1x1 + λ2r2x2 = 0. Multiplying first equation by λ1 and
subtracting it from the second, we get λ1r1x1 + λ2r2x2 − (λ1r1x1 + λ1r2x2) = 0− 0 = 0 =⇒
r2(λ2 − λ1)x2 = 0 and since x2 6= 0, and λ1 6= λ2, we conclude that r2 = 0. Similarly, r1 = 0
as well, and we conclude that x1 and x2 are in fact linearly independent. The proof extends
to more than 2 eigenvalues by induction. �
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Diagonalizable We say a matrix A ∈ Rn×n is diagonalizable if there exists some S ∈ Rn×n

such that S−1AS = D where D is a diagonal matrix (i.e. if A is similar to a diagonal matrix).
By the proof above, every matrix that has n DISTINCT eigenvalues is diagonalizable by the
proof above. Let S be the matrix whose columns are the eigenvectors, then AS = ΛS where
Λ is the matrix with the eigenvalues on the diagonal. By the proof above, S is invertible
(why?) so we get that A is diagonalizable. Note that some matrices that fail to have n
distinct eigenvalues may still be diagonalizable, as we’ll see in a moment.

Now suppose that we have n × n A and for some S, we have S−1AS = Λ, a diagonal
matrix. Then you can easily see for yourself that the columns of S are eigenvectors of A and
diagonal entries of Λ are corresponding eigenvalues. So the matrices that can be made into
a diagonal matrix by pre-multiplying by S−1 and post-multiplying by S for some invertible
S are precisely those that have n linearly independent eigenvectors (which are, of course,
the columns of S). Clearly, I is diagonalizable (S−1IS = I) ∀ invertible S, but I only has a
single eigenvalue 1. So we have an example of a matrix that has a repeated eigenvalue but
nonetheless has n independent eigenvectors.

If A is diagonalizable, calculation of powers of A becomes very easy, since we can see
that Ak = SΛkS−1, and taking powers of a diagonal matrix is about as easy as it can get.
This is often a very helpful identity when solving recurrent relationships.

Example A classical example is the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . , where each
term (starting with 3rd one) is the sum of the preceding two: Fn+2 = Fn + Fn+1. We want
to find an explicit formula for n-th Fibonacci number, so we start by writing

[
Fn+1

Fn

]
=

[
1 1
1 0

] [
Fn
Fn−1

]

or un = Aun−1, which becomes un = Anu0, where A =

[
1 1
1 0

]
, and u0 =

[
1
0

]
. Diagonal-

izing A we find that S =

[
1+
√

5
2

1−
√

5
2

1 1

]
and Λ =

[
1+
√

5
2

0

0 1−
√

5
2

]
, and identifying Fn with

the second component of un = Anu0 = SΛnS−1u0, we obtain Fn = 1√
5

[(
1+
√

5
2

)n
−
(

1−
√

5
2

)n]
We finally note that there’s no relationship between being diagonalizable and being invert-

ible.

[
1 0
0 1

]
is both invertible and diagonalizable,

[
0 0
0 0

]
is diagonalizable (it’s already

diagonal) but not invertible,

[
3 1
0 3

]
is invertible but not diagonalizable (check this!), and[

0 1
0 0

]
is neither invertible nor diagonalizable (check this too).
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6.3 Complex Matrices

Complex Matrix We now allow complex entries in vectors and matrices. Scalar multi-
plicaiton now also allows multiplication by complex numbers, so we’re going to be dealing
with vectors in Cn, and you should check for yourself that dim(Cn) = dim(Rn) = n (Is Rn a
subspace of Cn?)2 We also note that we need to tweak a bit the earlier definition of transpose
to account for the fact that if x = [1, i]T ∈ C2, then

xTx = 1 + i2 = 0 6= 2 = ‖x‖2.

Recall that if z = a+ bi ∈ C then the conjugate of x, is z̄ = a− bi. The modulus of z ∈ C
is given by

√
z · z̄ =

√
a2 + b2.

Returning to vectors/matrices we definite the conjugate-transpose or Hermetian-transpose.
If M ∈ Cn×d then the transpose-conjugate, MH ∈ Cd×n, is given by taking the transpose of
M then taking the conjugate of each entry i.e. MH

ij = M ji. We now have xHx = ‖x‖2. If
x ∈ Rn, then xH = xT .

You should check that (AH)H = A and that (AB)H = BHAH (you might want to use
the fact that for complex numbers x, y ∈ C, x+ y = x̄+ ȳ and xy = x̄ȳ). We say that x and
y in Cn are orthogonal if xHy = 0 (note that this implies that yHx = 0, although it is NOT
true in general that xHy = yHx).

Special Matrices We generalize some of the special matrices for Rn×n to Cn×n.

1. A ∈ Cn×n is Hermitian if A = AH . You should check that every real, symmetric real
matrix is Hermitian.

2. A ∈ Cn×n is unitary if AHA = AAH = I i.e. (AH = A−1). You should check that real,
orthogonal matrix is unitary.

3. A ∈ Cn×n is normal if it commutes with its Hermitian transpose: AHA = AAH .You
should check that Hermitian and unitary matrices are normal.

4. A ∈ Cn×n is positive definite if for all x ∈ Cn, xHAx > 0.

6.4 Facts that lead up to the spectral theorem

We next present some very important results about Hermitian and unitary matrices. These
facts will then be used to prove the spectral theorem.

1. If A is Hermitian, then ∀x ∈ Cn, y = xHAx ∈ R.

Proof : taking the hermitian transpose we have yH = xHAHx = xHAx = y, and the
only scalars in C that are equal to their own conjugates are the reals. �

2We refer to a one dimensional real subspace as a line. Why should we call a one dimensional subspace
of Cn a complex plane?
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2. If A is Hermitian, and λ is an eigenvalue of A, then λ ∈ R. In particular, all eigenvalues
of a symmetric real matrix are real (and so are the eigenvectors, since they are found
by elimination on A− λI, a real matrix).

Proof : suppose Ax = λx for some nonzero x, then pre-multiplying both sides by xH ,
we get xHAx = xHλx = λxHx = λ‖x‖2, and since the left-hand side is real, and ‖x‖2

is real and positive, we conclude that λ ∈ R. �

3. If A is positive definite, and λ is an eigenvalue of A, then λ > 0.

Proof : Let nonzero x be the eigenvector corresponding to λ. Then since A is positive
definite, we have xHAx > 0 =⇒ xH(λx) > 0 =⇒ λ‖x‖2 > 0 =⇒ λ > 0. �

4. If A is Hermitian, and x, y are the eigenvectors of A, corresponding to different eigen-
values (Ax = λ1x,Ay = λ2y), then xHy = 0.

Proof : λ1x
Hy = (λ1x)Hy (since λ1 is real) = (Ax)Hy = xH(AHy) = xH(Ay) =

xH(λ2y) = λ2x
Hy, and get (λ1 − λ2)xHy = 0. Since λ1 6= λ2, we conclude that

xHy = 0. �

5. The above result means that if a real symmetric n× n matrix A has n distinct eigen-
values, then the eigenvectors of A are mutually orthogonal, and if we restrict ourselves
to unit eigenvectors, we can decompose A as QΛQ−1, where Q is orthogonal (why?),
and therefore A = QΛQT . We will later present the result that shows that it is true of
EVERY symmetric matrix A (whether or not it has n distinct eigenvalues).

6. Unitary matrices preserve inner products and lengths.

Proof : Let U be unitary. Then (Ux)H(Uy) = xHUHUy = xHIy = xHy. In particular
‖Ux‖ = ‖x‖. �

7. Let U be unitary, and let λ be an eigenvalue of U . Then |λ| = 1 (Note that λ could
be complex, for example i, or 1+i√

2
).

Proof : Suppose Ux = λx for some nonzero x. Then ‖x‖ = ‖Ux‖ = ‖λx‖ = |λ|‖x‖,
and since ‖x‖ > 0, we have |λ| = 1. �

8. Let U be unitary, and let x, y be eigenvectors of U , corresponding to different eigen-
values (Ux = λ1x, Uy = λ2y). Then xHy = 0.

Proof : xHy = xHIy = xHUHUy = (Ux)H(Uy) = (λ1x)H(λ2y) = λH1 λ2x
Hy = λ̄1λ2x

Hy
(since λ1 is a scalar). Suppose now that xHy 6= 0, then λ̄1λ2 = 1. But |λ1| = 1 =⇒
λ̄1λ1 = 1, and we conclude that λ1 = λ2, a contradiction. Therefore, xHy = 0. �

9. A schur factorization of a square matrix A is A = QTQH where Q is unitary and T is
upper triangular. Every square matrix has a Schur factorization.

Proof : (borrowed from Numerical Linear Algebra, by Trefethen) We prove the result
by induction. The base case n = 1 is trivial. Assume the result is true for n− 1 ≥ 2.
Let x be an eigenvector of A with corresponding eigenvalue lambda. Assume x is
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normalized. Let U be a unitary matrix whose first column is x (Why can we construct
such a unitary matrix? Hint : Gram-Schmit). We can check that

UHAU =

[
λ B
0 C

]
where B ∈ C1×n−1 and C ∈ Cn−1×n−1. By the inductive hypothesis the matrix C has
a Schur factorization, C = V TV H i.e. V is unitary and T is upper triangular. Now let
the matrix Q be given by

Q := U

[
1 0
0 V

]
.

We can now check that Q is a unitary matrix and

QHAQ =

[
λ BV
0 T

]
.

is a Schur factorization of A. �.

10. If A is normal, and U is unitary, then B = U−1AU is normal.

Proof : BBH = (UHAU)(UHAU)H = UHAUUHAHU = UHAAHU = UHAHAU
(since A is normal) = UHAHUUHAU = (UHAU)H(UHAU) = BHB. �

11. If n× n A is normal, then ∀x ∈ Cn we have ‖Ax‖ = ‖AHx‖.
Proof : ‖Ax‖2 = (Ax)HAx = xHAHAx = xHAAHx = (AHx)H(AHx) = ‖AHx‖2. And
since ‖Ax‖ ≥ 0 ≤ ‖AHx‖, we have ‖Ax‖ = ‖AHx‖. �

12. If A is normal and A is upper triangular, then A is diagonal.

Proof : Consider the first row of A. In the preceding result, let x =


1
0
...
0

. Then

‖Ax‖2 = |a11|2(since the only non-zero entry in first column of A is a11) and ‖AHx‖2 =
|a11|2 + |a12|2 + . . . + |a1n|2. It follows immediately from the preceding result that
a12 = a13 = . . . = a1n = 0, and the only non-zero entry in the first row of A is a11. You
can easily supply the proof that the only non-zero entry in the i-th row of A is aii and
we conclude that A is diagonal. �

6.5 Spectral Theorem

First we state the typical version of the spectral theorem.

Spectral Theorem: If A ∈ Cn×n is Hermitian then there we can write A = UΛUH where
U ∈ Cn×n is unitary and Λ ∈ Rn×n is diagonal with real entries. Equivalently, every Hermi-
tian matrix has n real eigenvalues and with n linearly independent eigenvectors.
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proof : Let A = UTUH where U is unitary and T is upper triangular be the Schur decompo-
sition of A (exists for every matrix by fact 9). Since A is Hermitian it is also normal; thus
fact 10 shows T is normal. Since T is normal and upper triangular is is in fact diagonal (by
fact 10).

The Schur decomposition A = UTUT is thus an eigenvalue decomposition i.e. AU = UT
where T is the diagonal matrix of the eigenvalues. Finally, fact 2 says the eigenvalues of A
are real thus T is real. �.

Next we state a special case of the spectral theorem for real, symmetric matrices (this is
the version that we usually use in statistics).

Spectral Theorem (real case): If A ∈ Rn×n is Symmetric then there we can write
A = QΛQT where Q ∈ Rn×n is orthogonal and Λ ∈ Rn×n is diagonal with real entries.
Equivalently, every real symmetric matrix has n real eigenvalues and with n linearly inde-
pendent eigenvectors. The real case follows from the above Spectral theorem plus the second
part of fact 2.

A natural question to ask is: what is the set of matrices which the spectral theorem
applies to? In other words, can we characterize the set of matrices A that are unitary
diagonalizable i.e. there exists a unitary U and (possibly complex) diagonal Λ such that
A = UΛUH? It turns out the answer is exactly the class of normal matrices.

Spectral Theorem (general): A ∈ Cn×n is normal if and only if there exists unitary
U ∈ Cn×n and diagonal Λ ∈ Cn×n such that A = UΛUH . Equivalently, A is normal if and
only if it as an orthonormal set of (possibly complex) eigenvectors.

Here are some facts that are based on the spectral theorem.

1. If A ∈ Rn×n is positive definite, it has a square root B, s.t. B2 = A.

Proof : By the spectral theorem we can write A = QΛQT , where all diagonal entries
of Λ are positive and Q is orthogonal. Let B = QΛ1/2QT , where Λ1/2 is the diagonal
matrix that has square roots of main diagonal elements of Λ along its main diagonal,
and calculate B2 (more generally if A is positive semi-definite, it has a square root).
You should now prove for yourself that A−1 is also positive definite and therefore A−1/2

also exists. �

2. If A is idempotent, and λ is an eigenvalue of A, then λ = 1 or λ = 0.

Proof : Exercise 6.4.

There is another way to think about the result of the Spectral theorem. Let x ∈ Rn and
consider Ax = QΛQTx. Then (do it as an exercise!) carrying out the matrix multiplication
on QΛQT and letting q1, q2, . . . , qn denote the columns of Q and λ1, λ2, . . . , λn denote the
diagonal entries of Λ, we have:

QΛQT = λ1q1q
T
1 + λ2q2q

T
2 + · · ·+ λnqnq

T
n

and so
Ax = λ1q1q

T
1 x+ λ2q2q

T
2 x+ . . .+ λnqnq

T
nx
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We recognize qiq
T
i as the projection matrix onto the line spanned by qi, and thus every

n× n symmetric matrix is the sum of n 1-dimensional projections. That should come as no
surprise: we have orthonormal basis q1, q2, . . . qn for Rn, therefore we can write every x ∈ Rn

as a unique combination c1q1 + c2q2 + . . .+ cnqn, where c1q1 is precisely the projection of x
onto line through q1. Then applying A to the expression we have Ax = λ1c1q1 + λ2c2q2 +
. . .+ λncnqn, which of course is just the same thing as we have above.

Variational characterization of eigenvectors The spectral theorem shows that an or-
thonormal eigenbasis exists for Hermitian matrices. The Courant-Fischer theorem charac-
terizes the eigenvectors/values of a Hermitian matrix through an optimization perspective.
In this section we focus on real, symmetric matrices, but the discussion is essentially identical
for complex matrices.

For a symmetric matrix A ∈ Rn×n let the Rayleigh quotient be R : Rn → R given by

R(x) =
xTAx

xTx

We set R(0) = 0. In other words, R computes the quadratic form of x then normalizes by
then length of x. If x is an eigenvector with eigenvalue λ then we can see R(x) = λ.

By the spectral theorem we can create an orthonormal basis, {v1, . . . , vn}, of eigenvectors
of A. Suppose we order the eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λn. For any x ∈ Rn we can write
x =

∑n
i=1 aivi. Therefore we can rewrite R as (check this yourself)

R(x) =

∑n
i=1 λia

2
i∑n

i=1 a
2
i

Notice R is now a weighted average of the eigenvalues.
Suppose that λ1 > λ2 i.e. the leading eigenvalue is strictly larger than the next eigenvalue.

With out loss of generality suppose that x has norm 1 which means
∑n

i=1 a
2
i = 1 (why can

we do this?). Then the weighted average (and therefore the Rayleigh quotient) is maximized
when a1 = 1 and ai = 0 for i > 1. In other words, the Rayleigh quotient is maximized
when x is the leading eigenvector v1 (really we should say “proportional to” the leading
eigenvector).

We have just shown that the solution to maxx:||x||=1 R(x) is given by v1 in the case that
λ1 > λ2.3 In other words, the leading eigenvector gives the direction which maximizes the
quadratic form xTAx when λ1 > λ2. What about if λ1 = λ2.

If two eigenvectors v1, v2 have the same eigenvalue λ then any linear combination of those
two eigenvectors gives another eigenvector with the same eigenvalue (since A(a1v1 + a2v2) =
λ(a1v1 +a2v2)). Let V1(A) ⊆ Rn be the subspace corresponding to eigenvectors of the leading
eigenvalue λ1. The Rayleigh quotient is maximized by any eigenvector in V1(A) (why?).

The general Courant-Fischer theorem essentially says that if we restrict the x to lie in
the subspace orthogonal to the leading eigenvector (or eigen subsapce V1) then the Raleigh
quotient is maximized by the eigenvector corresponding to the second largest eigenvalue.
Similarly for the 3rd, 4th, ....

3Restricting x to be norm 1 is an technical detail that makes things a little nicer, but doesn’t really
change the meaning of this result.
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For a statement and discussion of the full Courant-Fischer theorem see wikipedia: https:
//en.wikipedia.org/wiki/Min-max theorem and https://en.wikipedia.org/wiki/Rayleigh quotient.

6.6 Examples: Spectral theory

Convergence of Markov chains (Levin, Peres, Wilmer) In this example, we will use
the spectral decomposition to show certain Markov chains reach stability exponentially fast.

A Markov chain, conceptually, models the evolution of some quantity over time, in cases
where the next time step’s outcome depends only on the previous outcome and not on
the entire history. Markov chains, and their continuous-time analogs, are widely used in the
physical and social sciences, operations research and simulation. Markov Chain Monte Carlo
(MCMC) algorithms are one example.

Let’s consider a simple Markov chain: Consider a sequence of random variables X1, X2, . . .
each taking one of n possible values, which we can assume without loss of generality are the
integers {1, 2, . . . n}.

Such Markov chains are defined by a transition matrix P = (pij)i,j=1...n defined by the
conditional probabilities

Prob(X1 = j |X0 = i) = pij

We will assume, as is often the case, that

Prob(Xm+1 = j |Xm = i) m ≥ 0

In other words, pij is the probability the outcome takes value, or ’state’, j tomorrow if it
is in state i today. You should convince yourself that multi-step transition probabilities are
given by matrix powers, i.e.

p
(k)
ij = (P k)ij = Prob(Xm+k = j |Xm = i)

If ν = (ν1 . . . νn) is any probability vector (νi ≥ 0,
∑
νi = 1) representing the distribution

of X0, which we call the initial distribution, we have by definition of conditional probabilities

Prob(Xm = j) = (νTPm)j

We will make the following additional assumptions about our matrix P . This guarantees
the chain is irreducible and aperiodic (terms you do not need to know for this course):

pij > 0 ∀ i, j

A fact from Markov chain theory is that

∃ π = (π1 . . . πn) πTP = πT , πi > 0 i = 1 . . . n

π is called the stationary distribution. A standard question in Markov chain theory
generally is to ask: How quickly does
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p
(m)
ij → πj ∀ i

These types of questions are important if, for example, you are using MCMC to estimate
an unknown ’true’ distribution for model parameters, in which convergence of the MCMC
algorithm implies you have indeed done so.

We make a final assumption (called reversibility):

πipij = pijπj ∀ i, j

We can answer the convergence question in the following sequence of steps, which you
can work out for yourself by computation.

1. Define the matrix A with entries aij =
√

πi
πj
pij and check that the assumptions above

imply A is a symmetric positive definite matrix. In other words, A = D1/2PD−1/2

2. You can check using the spectral theorem and direct calculation: λ1 = 1 > λ2 with
φ1 =

√
π, and λn > −1. In other words there is one eigenvalue at 1 and the rest are in

(−1, 1)

3. Spectral theorem: D1/2PD−1/2 = A = ΦΛΦT , where Φ is the matrix whose columns
are φ1, φ2 . . . φn and Λ is the diagonal matrix of eigenvalues. This implies

P = D−1/2ΦΛΦTD1/2, Pm = D−1/2ΦΛmΦTD1/2

Note D−1/2φi = ψi are eigenvectors for P corresponding to the same eigenvalues, and
ψ1 is the vector of ones.

4. Recall that 0 < λ? = max(|λ2|, |λn|) < 1. Using the previous statement, you can
calculate

p
(m)
ij

πj
=
(
D−1/2ΦΛmΦTD−1/2

)
ij

= 1 +
n∑
k=2

λmk (D−1/2Φ)ik(D
−1/2Φ)jk

and therefore by Cauchy-Schwartz∣∣∣∣∣p
(m)
ij

πj
− 1

∣∣∣∣∣ ≤
n∑
k=2

λmk |(D−1/2Φ)ik(D
−1/2Φ)jk| ≤ λm?

√√√√ n∑
k=2

|(D−1/2Φ)ik|2
n∑
k=2

|(D−1/2Φ)jk|2 ≤ Cλm?

for a positive constant C not dependent on i, j.

In other words, since λ? ∈ (0, 1), the Markov chain converges to its stationary distribution
exponentially fast.
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Principal Components Analysis and the Rayleigh quotient The Rayleigh quotient
characterization of eigenvalue/vectors is useful for a lot of statistical applications. For ex-
ample, Principal Components Analysis (PCA) finds directions of maximal variance which
you can write out as a maximizing the Rayleigh quotient of the sample covariance matrix.
Given a data matrix X ∈ Rn×d, assuming the columns have been mean centered, the first
PCA component can be formulated as the following optimization problem.

min
w∈Rd s.t. ||w||=1

||X −XwwT ||2F

where ||A||2F = tr(ATA) is the Frobenius norm (note you can show ||A||2F = sum of the
squared entries of A). The term, XwwT , is the projection of the data onto the subspace
spanned by the unit vector w (why?). Therefore X−XwwT is the “residual” of the projection
i.e. how far away the original data are away from the projected data. In other words, the
problem above means: find w that minimizes the residuals of the projected data.

A little bit of matrix algebra (exercise 6.6) shows the minimizing above problem of mini-
mizing the residuals is equivalent to maximizing the Rayleigh quotient of the sample covari-
ance matrix i.e.

max
w∈Rd s.t. ||w||=1

wTSw

where S := XTX is the sample covariance matrix (recall variables of X have been centered).
The upshot is: the first PCA component (often referred to as the first loading) is given the
leading eigenvector of the sample covariance matrix. The high PC components are given by
the remaining eigenvectors of the sample covariance matrix.

At lot of algorithms in statistics and machine learning can be understood as as the
eigenvectors/values of various matrices, For example: PCA, least squares/Ridge regression,
Canonical Correlation Analysis, Partial Least Squares, Fisher’s Linear Discrimination, Spec-
tral Clustering, kernel versions of all of these, etc. An excellent survey is given by Eigen-
problems in Pattern Recognition (and can be found at http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.128.2674&rep=rep1&type=pdf).

Exercises

6.1 Let A ∈ Cn. We will show that if A is non-negative definite it is Hermitian. This is
not true in the case of real matrices.

Define the bilinear function B(x, y) by 〈Ax, y〉 = yHAx. Note that ’bilinear’ in this case
means y 7→ B(x, y) is anti-linear in that B(x, αy + βz) = ᾱB(x, y) + β̄B(x, z).

1. By direct calculation, show the following identity holds for all complex numbers α, β
and vectors x, y:

αβ̄B(x, y) + ᾱβB(y, x) = B(αx+ βy, αx+ βy)− |α|2B(x, x)− |β|2B(y, y)
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2. Show that B(x, x) = 0 for all x implies A = 0, the matrix of all zeros. Hint: Apply the
identity above twice, first with α = β = 1 then with α = i =

√
−1 and β = 1. Recall

that for any vector v, 〈v, x〉 = 0 for all x implies v is zero.

3. Show that if B(x, x) is a real number for all x, then AH = A.

This last statement proves the result, since non-negative definiteness implies B(x, x) ≥
0 is real.

NOTE: In fact you have shown that if 〈Ax, x〉 is real for all x ∈ Cn, then A is
hermitian.

4. Find an example of A ∈ R2 non-negative definite that is not symmetric.

6.2 Show that if a matrix is triangular, its determinant is the product of the entries on the
main diagonal.

6.3 Let s1, s2, . . . , sn ∈ Rn be the set of linearly independent eigenvectors of A, let
λ1, λ2, . . . , λn be the corresponding eigenvalues (note that they need not be distinct), and let
S be the n× n matrix such that the j-th column of which is sj. Show that if Λ is the n× n
diagonal matrix s.t. the ii-th entry on the main diagonal is λi, then AS = SΛ, and since S
is invertible (why?) we have S−1AS = Λ.

6.4 Show that if rank(A) = r, then ATA has r non-zero eigenvalues.

6.5 Show that if A is idempotent, and λ is an eigenvalue of A, then λ = 1 or λ = 0.

6.6 Show that if A is a real matrix that is orthogonally diagonizable, then it must be
symmetric. Show that a real matrix that is normal but is not symmetric must have at least
one complex eigenvalue.

Hint: Use the spectral decomposition for (complex) normal matrices and the exercise
above, which says if 〈Ax, x〉 is real for all x ∈ Cn, then A is Hermitian. But if A ∈ Rn then
being Hermitian is the same as being symmetric.

6.7 Recall the Fibonacci diagonalization example above. If you had to compute the nth
(say n = 100) Fibonacci number by hand using the formula Fn+2 = Fn + Fn+1 how many
operations would it take? How about using the diagonalization procedure above?

Make some reasonable assumptions about how long it takes a grad student to add two
numbers and look up the nth power of a number on wolfram alpha; based on these assump-
tions, how much time would the grad student save by knowing the diagonalization formula
if his advisor asked him for the 107th Fibonacci number?

6.8
Let X ∈ Rn×d. Show the following two optimization problems are equivalent (see section

6.5 for context)
min

w∈Rd s.t. ||w||=1
||X −XwwT ||2F
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max
w∈Rd s.t. ||w||=1

wTSw

Where ||A||2F := tr(ATA) is the Frobenius norm. All you need to do to solve this problem
is expand the objective function in the first problem and use properties of the trace and the
fact that ||w|| = 1. You should eventually get to something that looks like the negative of
the second problem (plus some constants).
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7 Tensors

In the orthogonal decomposition of a Hilbert space V , we showed that if K is a closed sub-
space then each v ∈ V can be written v = k1 + k2 where k1 ∈ K and k2 ∈ K⊥. More
succinctly, V is given as a direct sum of subspaces written V = K ⊕K⊥. The dimensions of
these subspaces add to the dimension of V .

In this section we consider a way of putting together two vector spaces V,H such that
the dimension of the new space is dimV × dimH rather than a sum. In addition, we will
look at operations on pairs of vector spaces that produce such structure.

The word ‘tensor’ recently has become popular in machine learning and statistics. See this
StackExchange post for a discussion of whether that is justified. Tensors have long-standing
use in mathematics and physics. An example from statistics comes from multi-dimensional
smoothing splines (see Hastie ch. 5).

Here all vector spaces considered are finite-dimensional, though the concept of a
tensor can apply to very general spaces. See Lang or Roman, ‘Advanced Linear Algebra.’

Definition: Tensor product Suppose V, U are finite-dimensional vector spaces over the
same field (e.g. real or complex numbers). Suppose {vi}n1 and {ui}m1 are bases for V, U .
Suppose ⊗ is a bilinear map on pairs (vi, uj) ∈ V × U = {(v, u) : u ∈ U, v ∈ V }, that is

vi 7→ vi ⊗ uj and uj 7→ vi ⊗ uj are linear maps

We extend this map to V ×U by linearity, such that if v =
∑
αivi and u =

∑
βjuj then

v ⊗ u =
∑

αiβjvi ⊗ uj

Check {vi⊗uj}i=1...n,j=1...m are linearly independent. Thus if we define the tensor prod-
uct of V, U as

V ⊗ U = span{vi ⊗ uj}i=1...n,j=1...m

then V ⊗ U is a vector space of dimension nm whose elements are of the form v ⊗ u.

We note that a tensor product defined in this way is a ‘universal’ bilinear map, in the
sense that if T : V ×U 7→ W is another bilinear linear map to a vector space W , then there
is a unique linear map S : V ⊗ U such that T (v, u) = S(v ⊗ u). This is done by defining
S(vi ⊗ uj) = T (vi, uj) on basis elements and extending it to the entire space.

An alternate definition comes from Halmos, ‘Finite Dimensional Vector Spaces.’ First,
note that we may define a direct sum V ⊕U in cases where U, V are disjoint (except for the
zero element) and every vector y ∈ V ⊕U can be written uniquely as v+u for v ∈ V, u ∈ U .
This space can thus be identified with the pairs (v, u). The space of bilinear maps (v, u) 7→
`(u, v) is a finite-dimensional vector space and thus has a dual space of continuous linear
functionals.
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Alternate definition Let V, U be as above. Then V ⊗ U is defined as the dual space B∗

of B, which is the space of bilinear maps on V ⊕ U .

Elements of V ⊗ U are denoted y = v ⊗ u, where y is such that y(`) = `(v, u) for all
` ∈ B. Note that this shows ⊗ is a bilinear map.

If {vi}n1 and {ui}m1 are bases for V, U , then {vi ⊗ uj}i=1...n,j=1...m is a basis for V ⊗ U .

Examples:

1. Say V = Rn and U = Rm. v ⊗ u = vuT is called the outer product and is a tensor
product. V ⊗ U is the space of n×m matrices.

Note 〈v, u〉 = tr(v ⊗ u).

2. V = Rn×p and U = Rm×q the spaces of n × p and m × q real matrices. Define the
Kronecker product of A = {aij}i=1...n,j=1...p and B ∈ U as

A⊗B =

a11B . . . a1pB
. . .
an1B . . . anpB


Then V ⊗ U is the space of nm× pq matrices.

3. V is an n-dimensional complex vector space and U = V ∗ its dual. Define the functional

v ⊗ ` = `(v)

Then ⊗ is a tensor product.

4. Suppose V , U are n, m dimensional vector spaces over the same field. Suppose {vi}
and {`j} are bases for V, U∗. We may define V ⊗U∗ and ⊗ as in the alternate definition
above.

Now consider the following map on V ⊗ U∗:

L(v ⊗ `)(u) = v`(u) ∀ u ∈ U

Thus Lmaps V⊗U∗ to the space of linear transformations from U to V , hom(U, V ), also
called homomorphisms as they preserve the vector space structure. In the exercises,
you are asked to show this map is in fact one-to-one and onto. In other words, V ⊗U∗
is isomorphic to the set of linear transformations from U to V .
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7.1 Exercises

7.1 V, U are n,m dimensional vector spaces over C. Show that if {vi}n1 are linearly
independent, then for u1 . . . un ∈ U we have∑

vi ⊗ ui = 0 =⇒ ui = 0, ∀i

and conclude that v ⊗ u = 0 if and only if one of the arguments is zero.

7.2 V, U are n,m dimensional vector spaces over C. Show that the map defined above
L : V ⊗ U∗ 7→ hom(U, V ) is one-to-one and onto. Hint: Recall that there is a bijection
between two finite-dimensional linear spaces if and only if they have the same dimension.
You can characterize the bijection using their respective bases.

7.3 If ⊗ is the Kronecker product given above, show that for real matrices A,B,C,D of
appropriate dimensions

1. (A⊗B)T = AT ⊗BT

2. (A⊗B)⊗ C = A⊗ (B ⊗ C)

3. (A⊗B)(C ⊗D) = (AC ⊗BD)

4. A,B invertible then (A⊗B)−1 = A−1 ⊗B−1

5. tr(A⊗B) = tr(A)tr(B)

6. rankA⊗B = rank(A)rank(B)

8 Singular Value Decomposition

Eigenvalues/vectors tell you a lot about a matrix4, however, the definition only makes sense
for square matrices. The Spectral theorem says every symmetric matrix has an eigenbasis
which turns out to be very useful in many applied and theoretical problems. The singular
value decomposition (SVD) generalizes the notion of eigenvectors/values to any (possibly
non square, symmetric) matrix. For a matrix A ∈ Rn×d the SVD is essentially the eigenval-
ues/vectors of the square, symmetric matrices ATA ∈ Rd×d and AAT ∈ Rn×n.

The following notes give a nice summary of SVD http://www4.ncsu.edu/∼ipsen/REU09/
chapter4.pdf.

8.1 Definition

We first give the definition of a singular value decomposition of a matrix. It looks like there
are a lot of parts to the definition, but the important quantities are the matrices U, S, and
V . We then state an existence theorem (every matrix has an SVD) then state a uniqueness

4The prefix eigen means “proper” in German which should give some indication of how important math-
ematicians thinks eigenvalues/vectors are.
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theorem (an SVD of a matrix is unique-ish). In this chapter we focus on real matrices,
however, the story is similar for complex matrices.

Definition: Let A ∈ Rn×d with m := min(n, d) and r = rank(A). The SVD of A is given
by

A :=
[
U U0

] [S 0
0 0

] [
V
V0

]
:= UfullSfullV

T
full

=USV T

=
r∑

k=1

skkukv
T
k

(4)

The matrices Ufull ∈ Rn×n, Sfull ∈ Rn×d , Vfull ∈ Rd×d are known as the full SVD. The
matrices U ∈ Rn×r, S ∈ RR×R , V ∈ Rd×R are known as the reduced SVD. Most of the time
we focus on the reduced SVD.

The matrices U ∈ Rn×r, U0 ∈ Rn×(m−r) satisfy

• Ufull =
[
U U0

]
∈ Rn×n is an orthogonal matrix

• The columns of U , given by uk ∈ Rn give an orthonormal basis of the the column space
of A i.e. col(U) = col(A) and are called the left singular vectors

• The columns of U0 span the the left kernel of A i.e. col(U0) = N(AT )

The matrices V ∈ Rd×r, V0 ∈ Rd×(m−r) satisfy

• Vfull =
[
V V0

]
∈ Rd×d is an orthogonal matrix

• The columns of V , given by vk ∈ Rd give an orthonormal basis of the the row space of
A i.e. col(V ) = col(AT ) and are called the right singular vectors

• The columns of V0 span the the right kernel of A i.e. col(V0) = N(A)

The matrix S ∈ Rr×r is a diagonal matrix with strictly positive entries given by skk > 0
which are called the singluar values.

Exercise 1 asks you to verify the three different versions of the SVD decomposition are in
fact equal. The SVD of A is related to the eigen-decomposition of ATA and AAT as follows

1. The left singular vectors, uk ∈ Rn, are the eigenvectors of ATA.

2. The right singular vectors, vk ∈ Rd, are the eigenvectors of AAT .

3. The singular values, skk, are the square roots of the eigenvalues of ATA and AAT (recall
these have the same eigenvalues).
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Theorem (SVD existence): Every matrix has a singular value decomposition.

Proof : First we construct the matrix Vfull by an eigen-decomposition of ATA. Note
ATA ∈ Rd×d symmetric and therefore has a set of d real orthonormal eigenvectors. Since
rank(ATA) = rank(A) = r, we can see that ATA has r non-zero (possibly-repeated) eigen-
values (Exercise 6.3). Arrange the eigenvectors v1, v2, . . . , vd in such a way that the first
v1, v2, . . . , vr correspond to non-zero λ1, λ2, . . . , λr and put v1, v2, . . . , vd as columns of Vfull.
Note that as vr+1, vr+2, . . . , xd form a basis for N(A) by Exercise 2.4 as they are linearly
independent, dim(N(A)) = d− r and

vi ∈ N(A) for i = r + 1, ..., d.

Therefore v1, v2, . . . , vr form a basis for the row space of A.

We construct Sfull using the eigenvalues of ATA. Now set sii =
√
λi for 1 ≤ i ≤ r. Let

Sfull ∈ Rn×d be the middle matrix with S on the top left and the remaining entries zero.

Finally we construct the matrix Ufull ∈ Rn×n. For 1 ≤ i ≤ r, let

ui =
Avi
sii
∈ Rn

be the first r columns of Ufull. You should verify for yourself that ui’s are orthonormal
(uTi uj = 0 if i 6= j, and uTi ui = 1). By Gram-Schmidt, we can extend the set u1, u2, . . . , ur to
a complete orthonormal basis for Rn, u1, u2, . . . , ur, ur+1, . . . , un. As u1, u2, . . . , ur are each in
the column space of A and linearly independent, they form an orthonormal basis for column
space of A and therefore ur+1, ur+2, . . . , un form an orthonormal basis for the left nullspace
of A.

We now verify that A = UfullSfullV
T
full by checking that UT

fullAVfull = Sfull. Consider
ij-th entry of UT

fullAVfull. It is equal to uTi Avj. For j > r, Avj = 0 (why?), and for j ≤ r
the expression becomes uTi sjjuj = sjju

T
i uj = 0(if i 6= j) or sii (if i = j). And therefore

UT
fullAVfull = Sfull, as claimed. �

Theorem (SVD uniqueness-ish): Suppose U, S, V is the reduced SVD of a matrix A and
Q ∈ Rr× is an orthogonal matrix. Then UQ, S, UQ is another SVD of A. We can make a
similar statement for the matrices U0 and V0. This set of orthogonal transofmations gives
every SVD of A.

Remark: The singular values of a matrix are unique i.e. they are the square root of the
eigenvalues of ATA and AAT .

Remark: The singular vectors of a matrix are not unique. However, the subspaces
spanned by the singular vectors (e.g. span(u1, uu)) are unique.

One of the main applications of SVD is finding a lower rank approximation of A. Note
that we can write A in terms of outer products of its singular vectors by

A =
r∑
i=1

siuiv
T
i
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Note we ordered the singular values in non-increasing order i.e. s1 ≥ s2 . . . . We might
approximate A by retaining the first k < r singular vectors i.e.

Ã =
k∑
i=1

siuiv
T
i

We refer to this approximation as the rank k SVD of A. Exercise 7.2 asks you to justify
the fact that Ã is rank k. This approximation is at the heart of methods like PCA and is
discussed in more depth in Section 7.2 below.

8.2 Low rank approximation

Suppose we are given a matrix A ∈ Rn×d and we want to approximate it with a low rank
matrix. Consider the following optimization problem: given an integer K we find a rank K
approximation of A by

maximize ||A−X||2F
subject to rank(X) ≤ K.

(5)

where ||M ||2F = tr(MTM) is the Frobenius norm of a matrix. In other words, we find the
matrix of rank less than or equal to K that is closes to A in the Frobenius norm.
Eckart-Young theorem: The solution to Problem 5 is given by the rank K SVD of A.

Remark: The rank K SVD approximation of A is given by
∑K

i=1 siuiv
T
i where si, ui, vi are

as in the definition of the SVD (e.g. ui is the ith left singular vector of A.)

Remark: The discussion in Section 6.5 above on the first Principal Components direction
proves the Eckart-Young theorem in the case k = 1 (why?)

For a matrix A ∈ Rn×d denote 2-norm or spectral norm by

||A||2 =
√
s1 (i.e. square root the largest singular value of A)

Warning: the 2-norm is not equal to the Frobenius norm. For a discussion of matrix
norms (which will also clarify the naming conventions) see wikipedia https://en.wikipedia.
org/wiki/Matrix norm. Exercise 7.3 asks you to show that the 2-norm is a norm.

For the proof we point of Eckart-Young we point the reader to: https://en.wikipedia.org/
wiki/Low-rank approximation#Proof of Eckart.E2.80.93Young.E2.80.93Mirsky theorem .28for
Frobenius norm.29. This proof uses some facts about the matrix 2-norm and the Frobenius
norm which are left as exercises at the end of this chapter.

8.3 A few Applications

Pseudoinverse and least squares Suppose we have a matrix A ∈ Rn×d and we are
interested in finding some kind of inverse. If n = d and A is full rank then we have an actual
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inverse, however, if A is not full rank or. Even worse, if A is not square, it’s not exactly
clear what an inverse would even mean.

To make this problem a little more concrete consider solving a linear system, given A
and b ∈ Rn find x ∈ Rd such that

Ax = b.

If b 6∈ col(A) then there is no solution. If b ∈ col(A), but the columns of A a linearly
dependent then there is an infinite number of solutions. To rectify both of these situations
let’s relax the problem a little and consider finding x to minimize

||Ax− b||2

We can show the unique solution, x∗, is given using the full SVD of A

x∗ = VfullS
+
fullU

T
fullb

where S+
full =

[
S−1 0

0 0

]
where S−1 always exists since S is a diagonal matrix with strictly

positive entries. It’s a good exercise to show that if A is square an invertible the above
equation gives the normal least squares solution.

The Moore-Penrose pseudoinverse of a matrix A ∈ Rn×d, denoted A+ ∈ Rd×n, is given by
A+ = VfullS

+
fullU

T
full. This pseudo inverse always exists since every matrix has an SVD. For a

discussion of it’s properties see https://en.wikipedia.org/wiki/Moore-Penrose pseudoinverse.
We can now write the minimum norm solution to a linear equation as

x∗ = A+b

which makes A+ suggestive of being an inverse. More suggestively, one can show that A+

solves both
min

X∈Rd×n
||AX − In||F

min
X∈Rd×n

||XA− Id||F

Remark: The pseudoinverse is an example of the following problem solving principle: if you
can’t solve the problem you are given then try solving a related, easier problem.

Applications with Data We briefly mention a few applications statistics/machine learn-
ing applications of SVD. For a more detailed discussion of these methods see Eigenproblems
in Pattern Recognition (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.2674&
rep=rep1&type=pdf), standard statistics references, or Google.

1. The rank k PCA decomposition is equal to the rank k SVD of the data matrix after
centering the variables. If X ∈ Rn×d whose columns have been centered then the rank
k PCA approximation is given by the rank k SVD approximation of X. The resulting
data can be represented by the unnormalizes scores, UkSk where Uk ∈ Rn×k is the
first k left singular vectors (i.e. first k columns of U) and Sk ∈ Rk×k. The loadings
Vk ∈ Rd×k (first k right singular vectors) represent the k direction in Rd of maximal
variance.
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2. An n × d pixel, black and white image is given by a matrix X ∈ Rn×d. The rank k
SVD of an image matrix X can be used to compress the image: store an approximate
image that looks almost exactly like the original image, but takes a lot less memory. For
example, the original image requires saving nd numbers (i.e. one number for each pixel).
Suppose we compute a rank k SVD of X and store the resulting singular values/vectors;
the SVD approximation requires k(n + d) + k numbers. Suppose n = d = 1000; the
original image takes 1,000,000 numbers while the rank k = 20 SVD approximation
takes 2020 numbers. Low rank image approximations often give remarkably good
approximations of the original image (e.g. google “SVD image compression” to see
some examples).

3. Suppose we have two data sets X ∈ Rn×d and Y ∈ Rn×p with the same rows but
different columns. For example, consider a study where we have n = 200 patients,
d = 100 clinical variables (e.g. height, weight, etc) and p = 10000 gene expression
measurements. One way of investigating associations between two data matrices is
Partial Least Squares (PLS). Let Sxy ∈ Rd×p be the “cross-covariance matrix” given
by Sxy := XTY (assuming we have mean centered the columns of both data matrices).
One version of PLS5 amounts to computing the rank k SVD of Sxy.

4. Spectral clustering is a way of incorporating non-linearity into a clustering algorithm.
Suppose we ave given a data set X ∈ Rn×d and we would like to cluster there observa-
tions into K clusters. Spectral clustering amounts the following three steps

(a) Fix a measure of distance between observations, k : Rd × Rd, where k might be
the standard inner product or more generally any kernel (e.g. radial basis kernel).
Let A ∈ Rn×n be given by Aij = k(xi, xj) where xi is the ith observation (ith row
of X). Let D ∈ Rn×n be the diagonal matrix whose ith element, Dii =

∑n
j=1Aij.

Now let L ∈ Rn×n be the laplacian matrix given by L = D − A.

(b) Computing there rank K SVD of the laplacian matrix L resulting in a new matrix
Y ∈ Rn×K which we use to represent the original data.

(c) Apply a standard clustering algorithm such as K-means to the new matrix Y .

Spectral clustering is motivated by community detection for networks which explains
the above naming/notation (Laplacian, A, etc). For a survey on spectral clustering see
A Tutorial on Spectral Clustering (found at https://arxiv.org/pdf/0711.0189.pdf)

8.4 Principal Components Analysis

For an introduction to PCA see pages 373-385 from Introduction to Statistical Learning
(PDF available at http://www-bcf.usc.edu/∼gareth/ISL/). For some interesting PCA visu-
alizations see http://projector.tensorflow.org/. This section discusses a number of different
perspectives on PCA and connects them using linear algebra.

5Unfortunately there are a number of slightly different algorithms that are all called PLS. The one we
are referring to is called EZ-PLS or PLS-SVD.
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Suppose we have a data matrix X ∈ Rn×d with n observations and d variables. Let
x1, . . . , xn ∈ Rn be the observations (rows of X). PCA can be used for dimensionality
reduction (i.e. find a matrix in Rn×k, k < d that represents the data with fewer variables) or
directly for data analysis. The rank k-PCA returns

1. A scores matrix U ∈ Rn×k whose columns are u1, . . . , uk ∈ Rn

2. A loadings matrix V ∈ Rd×k whose columns are v1, . . . , vk ∈ Rd

3. A diagonal matrix S ∈ Rk×k whose diagonal entries are s1, . . . , sk > 0.

The value of k can range between 1 and min(n, d). PCA should remind you of SVD because
it is an SVD.

Fact: The rank k PCA is the rank k SVD of the data matrix after centering the column
means. In other words, let Xc ∈ Rn×d be the matrix whose ith row is given by xi− x̄ (where
x̄ ∈ Rd is the sample mean). Then k-PCA(X) = k-SVD(Xc).

6 The scores (loadings) are the
left (right) singular vectors of Xc.

PCA is computed by an SVD, however, this fact alone does not provide much intuition
into what PCA is doing. We present two more geometric perspectives on the first PCA
component.

Two geometric perspectives of the first PCA component Consider a candidate
loading vector v ∈ Rd. Assume ||v|| = 1.

One quantity of interest is the variance of data points after being projected onto the
line spanned by v (i.e. vTx1, . . . , v

Txn which turn out to be the scores). This quantity

is var
(
{xTi v}ni=1

)
= 1

n−1

(∑n
i=1 x

T
i v − ( 1

n

∑n
j=1 x

T
i v)
)

. To make life easier for ourselves let’s

assume for the rest of this section that have first centered the data i.e. xi → xi− x̄.
In this case the variance is now given by

var
(
{xTi v}ni=1

)
=

1

n− 1

n∑
i=1

(xTi v)2

We might decide that a “good” direction maximizes this variance.
Another quantity we are interested in is the residuals of the projections. Recall that

vvTxi ∈ Rd gives the projection of the data point xi onto the line spanned by v. We might
decide a “good” direction minimizes the distance been the original data points xi and their
projections vvTxi. In other words, we might try to minimize the sum of the squared residuals
ri = xi − vvTxi ∈ Rd

n∑
i=1

||xi − vvTxi||22

Figure 2, borrowed from this discussion https://stats.stackexchange.com/questions/2691/
making-sense-of-principal-component-analysis-eigenvectors-eigenvalues, visualizes the two

6One can of course compute k-SVD(X). PCA(X) is an affine approximation of a data cloud while SVD(X)
is a subspace approximation of a data cloud. Think the difference between linear regression with an intercept
(affine) vs. with no intercept (subspace).
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Figure 2: Two geometric perspectives of first PCA direction.

geometric quantities of interest. This image shows a number of two dimensional data points
(in blue). The line spanned by the vector v is shown in black. The projections of the vvTxTi
are the red points lying on the black line. The residuals are the red lines connecting the blue
data points to their red projections.

To summarize, we consider two objectives. The first component v ∈ Rd, ||v|| = 1 that

1. maximizes the variance of the projects

max
||v||=1

n∑
i=1

(xTi v)2
(
= var({xTi v}ni=1)

)
2. minimizes the squared residuals of the projected data

min
||v||=1

n∑
i=1

||xi − vvTxi||22

You can show that both of these formulations are related to the quadratic form vTSv
where S ∈ Rd×d is the sample covariance matrix (S =

∑n
i=1 xix

T
i e.g. see section 3.4).

Exercise 7.8 asks you to show that these two perspectives are give the same problem which
is solved by SVD.

Other PCA components The higher order loadings, v2, v3, . . . can be understood using
the above geometric perspectives plus an additional orthogonality constraint. In other words,
we let v2 be the direction in Rd orthogonal to v1 that minimizes the residuals of the projected
data points (or equivalently maximizes the variance of the projected data). Similarly for
v3, v4, . . . .

The scores are ui are given by ui = Xcvi. You can show ui ⊥ uj which means the new
variables derived from PCA are uncorrelated.
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8.5 The $25,000,000,000 Eigenvector: the Linear Algebra Behind
Google

See this paper for a linear algebra perspective on PageRank: https://www.rose-hulman.edu/
∼bryan/googleFinalVersionFixed.pdf

Exercises

8.1 Verify the three different versions of the SVD decomposition are equivalent (e.g.
UfullSfullV

T
full = USV T ).

8.2 Let ui ∈ Rn and ui ∈ Rd for i = 1, . . . , r. Assume the ui and the vi are orthonormal
(e.g. uTi uj = 0 if i 6= j). Let s1, . . . , sr ∈ R be scalars. Show that

A :=
n∑
i=1

siuiv
T
i

is a has rank R.

8.3 Show the matrix 2-norm ||A||2 =
√
s1 is a norm on the set of Rn×d matrices.

8.4 Show the matrix 2-norm is given by the following optimization problem

||A||22 = max
u∈Rd s.t. ||u||2=1

||Au||2

where ||u||2 above is the usual Euclidean vector norm. This property is where the matrix
2-norm get its (possibly confusing) name. In general, we can define a matrix p-norm for
p ≥ 1 by ||A||p := maxu∈Rd s.t. ||u||p=1 ||Au||p where the p norm of a vector is given by

||u||p =
(∑d

i=1 u
p
i

) 1
p
.

8.5 Prove the left inequality and right equality of the following

||A||2 ≤

(
n∑
i=1

d∑
j=1

|Aij|2
) 1

2

= ||A||F

8.6 Prove the Frobenius norm squared is equal to the of the sum of the squared singular
values i.e.

||A||2F =

√√√√ r∑
i=1

s2
i

This this should make the inequality ||A||2 ≤ ||A||F immediate.

8.7 Show that x∗ = Axb is the solution to

min
x
||Ax− b||2
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where A+ is the psueudoinverse (defined in section 7.3).

8.8 Show the two perspectives of the first PCA component give the same result i.e. show

min
||v||=1

n∑
i=1

||xi − vvTxi||22

max
||v||=1

n∑
i=1

(xTi v)2

have the same solution.

8.9 Show the two the above two problems are both solved by the first right eigenvector of
Xc (Hint : think about the Rayleigh quotient of the sample covariance matrix).

8.10 Let A ∈ Rn×d. Show that the solution to the following problem is given by the leading
left and right singular vectors. Minimize xTAy over x ∈ Rn and y ∈ Rd with ||x|| = ||y|| = 1.
Hint : start with the SVD of A.
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9 Matrix functions and differentiation

9.1 Basics

Here we just list the results on taking derivatives of expressions with respect to a vector
of variables (as opposed to a single variable). We start out by defining what that actually
means: Let x = [x1, x2, · · · , xk]T be a vector of variables, and let f be some real-valued
function of x (for example f(x) = sin(x2) + x4 or f(x) = x1

x7 + x11log(x3)). Then we define
∂f
∂x

=
[
∂f
∂x1
, ∂f
∂x2
, · · · , ∂f

∂xk

]T
. Below are the extensions

1. Let a ∈ Rk, and let y = aTx = a1x1 + a2x2 + . . .+ akxk. Then ∂y
∂x

= a

Proof : Follows immediately from definition.

2. Let y = xTx, then ∂y
∂x

= 2x

Proof : Exercise 5.1(a).

3. Let A be k × k, and a be k × 1, and y = aTAx. Then ∂y
∂x

= ATa

Proof : Note that aTA is 1 × k. Writing y = aTAx = (ATa)Tx it’s then clear from 1
that ∂y

∂x
= ATa. �

4. Let y = xTAx, then ∂y
∂x

= Ax + ATx and if A is symmetric ∂y
∂x

= 2Ax. We call the

expression xTAx =
k∑
i=1

k∑
j=1

aijxixj, a quadratic form with corresponding matrix A.

Proof : Exercise 5.1(b).

9.2 Jacobian and Chain Rule

A function f : Rn → Rm is said to be differentiable at x if there exists a linear function
L : Rn → Rm such that

lim
x′→x,x′ 6=x

f(x′)− f(x)− L(x′ − x)

‖x′ − x‖
= 0.

It is not hard to see that such a linear function L, if any, is uniquely defined by the above
equation. It is called the differential of f at x. Moreover, if f is differentiable at x, then all
of its partial derivatives exist, and we write the Jacobian matrix of f at x by arranging its
partial derivatives into a m× n matrix,

Df(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

...
∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)

 .
It is not hard to see that the differential L is exactly represented by the Jacobian matrix
Df(x). Hence,

lim
x′→x,x′ 6=x

f(x′)− f(x)−Df(x)(x′ − x)

‖x′ − x‖
= 0
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whenever f is differentiable at x.
In particular, if f is of the form f(x) = Mx+ b, then Df(x) ≡M .

Now consider the case where f is a function from Rn to R. The Jacobian matrix Df(x)
is a n-dimensional row vector, whose transpose is the gradient. That is, Df(x) = ∇f(x)T .
Moreover, if f is twice differentiable and we define g(x) = ∇f(x), then Jacobian matrix of
g is the Hessian matrix of f . That is,

Dg(x) = ∇2f(x).

Suppose that f : Rn → Rm and h : Rk → Rn are two differentiable functions. The
chain rule of differentiability says that the function g defined by g(x) = f(h(x)) is also
differentiable, with

Dg(x) = Df(h(x))Dh(x).

For the case k = m = 1, where h is from R to Rn and f is from Rn to R, the equation
above becomes

g′(x) = Df(h(x))Dh(x) = 〈∇f(h(x)), Dh(x)〉 =
n∑
i=1

∂if(h(x))h′i(x)

where ∂if(h(x)) is the ith partial derivative of f at h(x) and h′i(x) is the derivative of the
ith component of h at x.

Finally, suppose that f : Rn → Rm and h : Rn → Rm are two differentiable functions,
then the function g defined by g(x) = 〈f(x), h(x)〉 is also differentiable, with

Dg(x) = f(x)TDh(x) + h(x)TDf(x).

Taking transposes on both sides, we get

∇g(x) = Dh(x)Tf(x) +Df(x)Th(x).

Example 1. Let f : Rn → R be a differentiable function. Let x∗ ∈ Rn and d ∈ Rn be
fixed. Define a function g : R → R by g(t) = f(x∗ + td). If we write h(t) = x∗ + td, then
g(t) = f(h(t)). We have

g′(t) = 〈∇f(x∗ + td), Dh(t)〉 = 〈∇f(x∗ + td), d〉.

In particular,
g′(0) = 〈∇f(x∗), d〉.

Suppose in addition that f is twice differentiable. Write F (x) = ∇f(x). Then g′(t) =
〈d, F (x∗ + td)〉 = 〈d, F (h(t))〉 = dTF (h(t)). We have

g′′(t) = dTDF (h(t))Dh(t) = dT∇2f(h(t))d = 〈d,∇2f(x∗ + td)d〉.
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In particular,
g′′(0) = 〈d,∇2f(x∗)d〉.

Example 2. Let M be an n × n matrix and let b ∈ Rn, and define a function f : Rn → R
by f(x) = xTMx+ bTx. Because f(x) = 〈x,Mx+ b〉, we have

∇f(x) = MTx+Mx+ b = (MT +M)x+ b,

and
∇2f(x) = MT +M.

In particular, if M is symmetric then ∇f(x) = 2Mx+ b and ∇2f(x) = 2M .

9.3 Matrix functions

We may define matrix-valued functions for sufficiently smooth functions f using Taylor
expansions. We will focus on f : R 7→ R such that f is analytic, i.e. it has Taylor series
expansion

f(x) =
∞∑
0

αkx
k/k!, αk = f (k)(0)

Then for a matrix A ∈ Rn×n, we define

f(A) =
∞∑
0

αkA
k/k!

Whether this function exists depends on the radius of convergence of the Taylor expansion
of f relative to ‖A‖, where ‖ · ‖ is some matrix norm satisfying ‖AB‖ ≤ ‖A‖‖B‖, such as
the Frobenius norm defined elsewhere in these notes.

If A is diagonizable and the series above exists, we have the following much simpler
characterization

A = UΛUT =⇒ f(A) = Uf(Λ)UT

Since Λ is diagonal with entries λ1 . . . λn, we see from the power series expansion that
f(Λ) is diagonal with entries f(λ1) . . . f(λn).

Generalizations to infinite-dimensional settings also exist and rely on the spectral theo-
rem. See Lax.

Example: Solution to linear ODE Solutions x : [0,∞) 7→ Rn to the ODE

d

dt
x(t) = Ax(t) x(0) = x0

are given by
x(t) = etAx0

where the matrix exponential is defined as above for the function f(x) = etx.
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Example: Markov processes The matrix function etA = Pt is important in the theory
of Markov processes on finite state spaces, where the ij term of Pt gives the probability of
the process being in state j after t time given that it started in state i. The matrix A is, in
this case, is called the infinitessimal generator of the process.

Exercises

9.1 Prove the following properties of vector derivatives:

(a) Let y = xTx, then ∂y
∂x

= 2x

(b) Let y = xTAx, then ∂y
∂x

= Ax+ ATx and if A is symmetric ∂y
∂x

= 2Ax.

9.2 The inverse function theorem states that for a function f : Rn → Rn, the inverse
of the Jacobian matrix for f is the Jacobian of f−1:

(Df)−1 = D(f−1).

Now consider the function f : R2 → R2 that maps from polar (r, θ) to cartesian coordinates
(x, y):

f(r, θ) =

[
r cos(θ)
r sin(θ)

]
=

[
x
y

]
.

Find Df , then invert the two-by-two matrix to find ∂r
∂x

, ∂r
∂y

, ∂θ
∂x

, and ∂θ
∂y

.

9.3 Show that if Pt = etA for A ∈ Rn×n, then {Pt}t≥0 forms a semigroup. That is, check

• PtPs = Pt+s for all t, s ≥ 0

• P0 = I the identity

Such objects are important in the theory of linear evolution equations and in Markov
processes.
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10 Computation

This chapter discussions some computational algorithms that are relevant to problems we
often encounter in statistics (e.g eigenvector decomposition).

10.1 Power method

Let A ∈ Rn×n be a matrix with eigenvalues |λ1| > |λ2| ≥ . . . ,≥ |λn| and corresponding
eigenvectors v1, . . . , vn. In other words A has a leading eigenvalue/vector. The goal of this
section is to compute the leading eigenvector v1 ∈ Rn.

One way to do this would be to solve for the eigenvalues of A by computing the roots
of the polynomial p(λ) = det(A− λI) then finding the eigenvectors. From the discussion in
Section 6.2 we know this a bad idea since finding the roots of a polynomial is a very hard
problem to solve in general.

One of the most straightforward methods find the leading eigenvector of a matrix is
called the power method. The power method essentially consists of repeatedly multiplying a
random vector w0 by the matrix A i.e. computing Akw0. It turns out that as k → ∞ the
resulting vector will converge to v1.

Let w0 ∈ Rd be our starting point (typically selected randomly). Iterate the following for
a while

for k = 1, 2, . . .

wk+1 = Awk

wk+1 =
wk+1

||wk+1||

We stop after some finite (hopefully small) number of iterations and the let the resulting
wk be our estimate of v1. Most of the action is in the first line, Awk. The second line just
normalizes the magnitude of wk (for example, if wk = v1 and λ1 > 1 then Akw0 = λk1v1 has
a really large magnitude which our computer will not be happy about).

Theorem: Suppose A has a strictly largest eigenvalue and is diagonalizable. Addition-
ally, suppose w0 is not orthogonal to v1. Then as k → ∞, wk → ±v1 (i.e. we get either v1

or −v1). Additionally, ||wk − v1|| = O

(∣∣∣λ2λ1 ∣∣∣k).

Remark: This theorem not only says the power method converges (under some assumptions)
it also gives a convergence rate. We prove this theorem under the assumption that A is
diagonalizable (e.g. if A is symmetric we can apply the spectral theorem). The same theorem
holds without the diagonalizable assumption; this proof is similar, but uses Jordan canonical
form.

Proof : Since A is diagonalizable there exists an orthonormal basis of eigenvectors
v1, . . . , vn. Let w0 =

∑n
i=1 aivi (note a1 6= 0). The core of the proof is the following
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calculation

Akw0 =
n∑
i=1

aiλ
k
i vi

= λk1a1v1 + λk1

n∑
i=2

ai

(
λi
λ1

)k
vi

We are essentially done since the the second term in the above expression dies since | λi
λ1
| < 1

by assumption. Note that the power method re-normalizes wk each time so we only need to
show convergence up to a constant times Akw0.

||a1v1 −
1

λk1
Akw0||2 = ||a1v1 − a1v1 −

n∑
i=2

ai

(
λi
λ1

)k
vi||

= ||
n∑
i=2

ai

(
λi
λ1

)k
vi||

≤
n∑
i=2

|ai|
∣∣∣∣λiλ1

∣∣∣∣k
=

n∑
i=2

ã

∣∣∣∣λ2

λ1

∣∣∣∣k
= (n− 1)ã

∣∣∣∣λ2

λ1

∣∣∣∣k
where ã = maxi=2,...,n |ai|. �|.

The power method is the basis of more sophisticated Krylov subspace methods for com-
puting eigenvectors. In many cases the power method converges very quickly. Notice, how-
ever, the convergence rate is related to the quantity λ2

λ1
i.e. if λ1 >> λ2 the power method

will converge faster.

Squeezing the power method to get more eigenvectors We can use the power
method to compute larger eigenvectors. Let f(A) be any algorithm (e.g. the power method)
that returns the leading eigenvector of a matrix. Suppose we have a matrix A such that
the eigenvalues are strictly decreasing i.e. |λ1| > |λ2| > · · · > |λn|. We can find the eigen-
vectors by repeatedly computing f(A) then projecting the columns A onto the orthogonal
complement of each new eigenvector.

Let A1 := A then compute v1, . . . , vn by

for k = 1, 2, . . . , n

vk = f(Ak)

Ak+1 = A(I − vkvTk )

This is not the state of the art way to compute SVD, but it works. For a recent analysis
of this particular method see LazySVD: Even Faster SVD Decomposition Yet Without Ag-
onizing Pain (pdf can be found at https://arxiv.org/abs/1607.03463). For a more general
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treatment of the power method see Chapter 7 from http://people.inf.ethz.ch/arbenz/ewp/
Lnotes/lsevp.pdf.

10.2 Gradient Descent

Let F : Rd → R be a function and consider the problem of unconstrained minimization i.e.
find x∗Rd that minimizes F

min
xRd

F (x)

For example, if F (x) = x2 +bx+c you can solve this problem easily. If F (β) = ||Xβ−y||2
where now βRd is the variable and X ∈ Rn×d, y ∈ Rn then β∗ = (XTX)−1XTy is a solution
if XTX is invertible (this is linear regression).

In general, if we make no assumptions about F then minimizing it is really hard.
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11 Statistics: Random Variables

This sections covers some basic properties of random variables. While this material is not
necessarily tied directly to linear algebra, it is essential background for graduate level Statis-
tics, O.R., and Biostatistics. For further review of these concepts, see Casella and Berger,
sections 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 4.1, 4.2, 4.5, and 4.6.

Much of this section is gratefully adapted from Andrew Nobel’s lecture notes.

11.1 Expectation, Variance and Covariance

Expectation The expected value of a continuous random variable X, with probability
density function f , is defined by

EX =

∫ ∞
−∞

xf(x)dx.

The expected value of a discrete random variable X, with probability mass function p, is
defined by

EX =
∑

x∈R,p(x)6=0

xp(x).

The expected value is well-defined if E|X| <∞.

We now list some basic properties of E(·):

1. X ≤ Y imples EX ≤ EY
Proof: Follows directly from properties of

∫
and

∑
.

2. For a, b ∈ R, E(aX + bY ) = aEX + bEY .

Proof: Follows directly from properties of
∫

and
∑

.

3. |EX| ≤ E|X|
Proof: Note that X,−X ≤ |X|. Hence, EX,−EX ≤ E|X| and therefore |EX| ≤ E|X|.
�

4. If X and Y are independent (X ⊥ Y ), then E(XY ) = EX · EY .

Proof: See Theorem 4.2.10 in Casella and Berger.

5. If X is a non-negative continuous random variable, then

EX =

∫ ∞
0

P (X ≥ t)dt =

∫ ∞
0

(1− F (t))dt.
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Proof: Suppose X ∼ f . Then,∫ ∞
0

P (X > t)dt =

∫ ∞
0

[

∫ ∞
t

f(x)dx]dt

=

∫ ∞
0

[

∫ ∞
0

f(x)I(x > t)dx]dt

=

∫ ∞
0

∫ ∞
0

f(x)I(x > t)dtdx (Fubini)

=

∫ ∞
0

f(x)[

∫ ∞
0

I(x > t)dt]dx

=

∫ ∞
0

xf(x)dx = EX �

6. If X ∼ f , then Eg(X) =
∫
g(x)f(x)dx.

If X ∼ p, then Eg(X) =
∑
x

g(x)p(x).

Proof: Follows from definition of Eg(X).

Variance and Corvariance The variance of a random variable X is defined by

Var(X) = E(X − EX)2

= EX2 − (EX)2.

Note that Var(X) is finite (and therefore well-defined) if EX2 <∞. The covariance of two
random variables X and Y is defined by

Cov(X, Y ) = E[(X − EX)(Y − EY )]

= E(XY )− EXEY.

Note that Cov(X, Y ) is finite if EX2,EY 2 <∞.

We now list some general properties, that follow from the definition of variance and covari-
ance:

1. Var(X) ≥ 0, with “=” if and only if X is constant with probability 1.

2. For a, b ∈ R, Var(aX + b) = a2Var(X).

3. If X ⊥ Y , then Cov(X, Y ) = 0. The converse, however, is not true in general.

4. Cov(aX + b, cY + d) = acCov(X, Y ).

5. If X1, . . . , Xn satisfy EX2
i <∞, then

Var(
n∑
i=1

Xi) =
n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj).
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11.2 Distribution of Functions of Random Variables

Here we describe various methods to calculate the distribution of a function of one or more
random variables.

CDF method For the single variable case, given X ∼ fX and g : R→ R we would like to
find the density of Y = g(X), if it exists. A straightforward approach is the CDF method:

• Find FY in terms of FX

• Differentiate FY to get fY

Example 1: Location and scale. Let X ∼ fX and Y = aX + b, with a > 0. Then,

FY (y) = P (Y ≤ y) = P (aX + b ≤ y) = P (X ≤ y − b
a

)

= FX(
y − b
a

).

Thus, fY (y) = F ′Y (y) = a−1fX(y−b
a

).

If a < 0, a similar argument shows fY (y) = |a|−1f(y−b
a

).

Example 2 If X ∼ N(0, 1) and Y = aX + b, then

fY (y) = |a|−1φ(
y − b
a

)

=
1√

2πa2
exp

{
−(y − b)2

2a2

}
= N(b, a2).

Example 3 Suppose X ∼ N(0, 1). Let Z = X2. Then,

FZ(z) = P (Z ≤ z) = P (X2 ≤ z) = P (−
√
z ≤ X ≤

√
z)

= Φ(
√
z)− Φ(−

√
z) = 1− 2Φ(−

√
z).

Thus, fZ(z) = z−1/2φ(−
√
z) = 1√

2π
z−1/2e−z/2.

Convolutions The convolution f = f1 ∗ f2 of two densities f1 and f2 is defined by

f(x) =

∫ ∞
−∞

f1(x− y)f2(y)dy.

Note that f(x) ≥ 0, and∫ ∞
−∞

f(x)dx =

∫ ∞
−∞

[∫ ∞
−∞

f1(x− y)f2(y)dy

]
dx

=

∫ ∞
−∞

∫ ∞
−∞

f1(x− y)f2(y)dxdy

=

∫ ∞
−∞

f2(y)

[∫ ∞
−∞

f1(x− y)dx

]
dy =

∫ ∞
−∞

f2(y)dy = 1.
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So, f = f1 ∗ f2 is a density.

Theorem: If X ∼ fX , and Y ∼ fY and X and Y are independent, then X + Y ∼ fX ∗ fY .

Proof: Note that

P (X + Y ≤ v) =

∫ ∞
−∞

∫ ∞
−∞

fX(x)fY (y)I{(x, y) : x+ y ≤ v}dxdy

=

∫ ∞
−∞

∫ v−y

−∞
fX(x)fY (y)dxdy

=

∫ ∞
−∞

[∫ v−y

−∞
fX(x)dx

]
fY (y)dy

=

∫ ∞
−∞

[∫ v

−∞
fX(u− y)du

]
fY (y)dy (u = y + x)

=

∫ v

−∞

[∫ ∞
−∞

fX(u− y)fY (y)dy

]
du

=

∫ v

−∞
(fX ∗ fY )(u)du. �

Corollary: Convolutions are commutative and associative. If f1, f2, f3 are densities, then

f1 ∗ f2 = f2 ∗ f1

(f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3).

Change of Variables We now consider functions of more than one random variable. In
particular, let U, V be open subsets in Rk, and H : U → V . Then, if ~x is a vector in U ,

H(~x) = (h1(~x), . . . , hk(~x))t.

is a vector in V . The functions h1(·), . . . , hk(·) are the coordinate functions of H. If ~X is

a continuous random vector, we would like to find the density of H( ~X). First, some further
assumptions:

(A1) H : U → V is one-to-one and onto.

(A2) H is continuous.

(A3) For every 1 ≤ i, j ≤ k, the partial derivatives

h′ij ≡
∂hi
∂xj

exist and are continuous.
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Let DH(~x) be the matrix of partial derivatives of H:

DH(~x) = [h′ij(~x) : 1 ≤ i, j ≤ k].

Then, the Jacobian (or Jacobian determinant7) of H at ~x is the determinant of DH(~x):

JH(~x) = det(DH(~x)).

The assumptions A1-3 imply that H−1 : V → U exists and is differentiable on V with

JH−1(~y) = (JH(H−1(y)))−1.

Theorem: Suppose JH(~x) 6= 0 on U . If ~X ∼ f ~X is a k-dimensional random vector such

that P ( ~X ∈ U) = 1, then ~Y = H( ~X) has density

f~Y (~y) = f ~X(H−1(~y)) · |JH−1(~y)|
= f ~X(H−1(~y)) · |JH(H−1(~y))|−1.

Example: Suppose X1, X2 are jointly continuous with density fX1,X2 . Let Y1 = X1 + X2,
Y2 = X1 −X2, and find fY1,Y2 .

Here

y1 = h1(x1, x2) = x1 + x2

y2 = h2(x1, x2) = x1 − x2

x1 = g1(y1, y2) =
1

2
(y1 + y2)

x2 = g2(y1, y2) =
1

2
(y1 − y2),

and

JH(x1, x2) =

∣∣∣∣ ∂h1
∂x1

∂h1
∂x2

∂h2
∂x1

∂h2
∂x2

∣∣∣∣ =

∣∣∣∣ 1 1
1 −1

∣∣∣∣ = −2 6= 0.

So, applying the theorem, we get

fY1,Y2(y1, y2) =
1

2
fX1,X2(

y1 + y2

2
,
y1 − y2

2
).

As a special case, assume X1, X2 are N(0, 1) and independent. Then,

fY1,Y2(y1, y2) =
1

2
φ(
y1 + y2

2
)φ(

y1 − y2

2
)

=
1

4π
exp

{
−(y1 + y2)2

8
− (y1 − y2)2

8

}
=

1

4π
exp

{
−2y2

1 + 2y2
2

8

}
=

1

4π
exp

{
−y

2
1

4

}
exp

{
−y

2
2

4

}
.

7The partial derivative matrix D is sometimes called the Jacobain matrix (see Section 9.2).
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So, both Y1 and Y2 are N(0, 2), and they are independent!

11.3 Derivation of Common Univariate Distributions

Double Exponential If X1, X2 ∼ Exp(λ) and X1 ⊥ X2, then X1 − X2 has a double
exponential (or Laplace) distribution: X1 −X2 ∼ DE(λ). The density of DE(λ),

f(x) =
λ

2
e−λ|x| −∞ < x <∞,

can be derived through the convolution formula.

Gamma and Beta Distributions The gamma function, a component in several prob-
ability distributions, is defined by

Γ(t) =

∫ ∞
0

xt−1e−xdx, t > 0.

Here are some basic properties of Γ(·) :

1. Γ(t) is well-defined for t > 0.

Proof: For t > 0,

0 ≤ Γ(t) ≤
∫ 1

0

xt−1dx+

∫ ∞
1

xt−1e−xdx <∞. �

2. Γ(1) = 1.

Proof: Clear.

3. ∀x > 0, Γ(x+ 1) = xΓ(x).

Proof: Exercise 7.4.

4. Γ(n+ 1) = n! for n = 0, 1, 2, ....

Proof: Follows from 2, 3.

5. log Γ(·) is convex on [0,∞).

The gamma distribution with parameters α, β > 0, Γ(α, β), has density

gα,β(x) =
βαxα−1e−βx

Γ(α)
, x > 0.

Note: A basic change of variables shows that for s > 0,

X ∼ Γ(α, β) ⇐⇒ sX ∼ Γ

(
α,
β

s

)
.

So, β acts as a scale parameter of the Γ(α, ·) family. The parameter α controls shape:

79



• If 0 < α < 1, then gα,β(·) is convex and gα,β ↑ ∞ as x→ 0.

• If α > 1, then gα,β(·) is unimodal, with maximum at x = α−1
β

.

If X ∼ Γ(α, β), then EX = α
β
, Var(X) = α

β2 .

We now use convolutions to show that if X ∼ Γ(α1, β), Y ∼ Γ(α2, β) are independent
then X + Y ∼ Γ(α1 + α2, β):

Theorem: The family of distributions {Γ(·, β)} is closed under convolutions. In particular

Γ(α1, β) ∗ Γ(α2, β) = Γ(α1 + α2, β).

Proof: For x > 0,

f(x) = (gα1,β ∗ gα2,β)(x)

=

∫ x

0

gα1,β(x− u)gα2,β(u)du

=
βα1+α2

Γ(α1)Γ(α2)
e−βx

∫ x

0

(x− u)α1−1uα2−1du (6)

= const · e−βxxα1+α2−1

Thus, f(x) and gα1+α2,β(x) agree up to constants. As both integrate to 1, they are the same
function. �

Corollary: Note if α = 1, then Γ(1, β) = Exp(β). Hence, If X1, . . . , Xn are iid ∼ Exp(λ),
then

Y = X1 + . . .+Xn ∼ Γ(n, λ),

with density

fY (y) =
λnyn−1e−λy

(n− 1)!
.

This is also known as an Erlang distribution with parameters n and λ.

It follow from equation (6), with x = 1 that

βα1+α2

Γ(α1)Γ(α2)
e−β

∫ 1

0

(1− u)α1−1uα2−1du

= gα1+α2,β(1) =
βα1+α2e−β

Γ(α1 + α2)
.

Rearranging terms shows that for r, s > 0,

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
=

∫ 1

0

(1− u)r−1us−1du.

Here B(·, ·) is known as the beta function with parameters r, s. The beta distribution
Beta(r, s) has density

br,s(x) = B(r, s)−1 · xr−1(1− x)s−1, 0 < x < 1.
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The parameters r, s play symmetric roles. If r = s then Beta(r, s) is symmetric about 1/2.
Beta(r, r) is u-shaped if r < 1, uniform if r = 1, and unimodal (bell shaped) if r > 1. If
r > s > 0 then Beta(r, s) is skewed to the right, if 0 < s < r then Beta(r, s) is skewed left.
The random variable X ∼ Beta(r, s) has expection and variance

EX =
r

r + s
, Var(X) =

rs

(r + s)2(r + s+ 1)
.

Chi-square distributions Fix an integer k ≥ 1. Then, the chi-square distribution with
k degrees of freedom, written χ2

k, is Γ(k/2, 1/2). Thus, χ2
k has density

fk(x) =
1

2k/2Γ(k
2
)
x

k
2
−1e−

x
2 , x > 0.

Theorem: If X1, . . . , Xk are iid N(0, 1), then X2
1 + . . .+X2

k ∼ χ2
k.

Proof: Recall that if X ∼ N(0, 1) then X2 ∼ f(x) = 1
2
√
π
e−

x
2 = Γ(1

2
, 1

2
). Thus, X2 ∼ χ2

1.
Furthermore,

X2
1 + . . .+X2

k ∼ Γ

(
k

2
,
1

2

)
= χ2

k. �

If Y = X2
1 + . . .+X2

k ∼ χ2
k, then

EY = E(X2
1 + . . .+X2

k) = kEX2
1 = k.

Var(Y ) = kVar(X2
1 ) = k(EX4

1 − (EX2
1 )2)

= k(3− 1) = 2k.

F and t-distributions The F-distribution with with m,n degrees of freedom, F (m,n),
is the distribution of the ratio

X/m

Y/n
,

where X ∼ χ2
m, Y ∼ χ2

n, and X ⊥ Y .

The density of F (m,n) is

fm,n(x) = B−1
(m

2
,
n

2

)(m
n

)m
2
x

m
2
−1
(

1 +
m

n
x
)− 1

2
(m+n)

.

The t-distribution with n degrees of freedom, tn, is the distribution of the ratio

X√
Y 2/n

,
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where X ∼ N(0, 1), Y 2 ∼ χ2
n are independent. Equivalently, tn is the distribution of

√
Z

where Z ∼ F (1, n). The density of tn is

fn(t) =
1

nB
(

1
2
, n

2

) · (1 +
t2

n

)−(n+1)/2

.

Some other properties of the t-distribution:

1. t1 is the Cauchy distribution.

2. If X ∼ tn then EX = 0 for n ≥ 2, undefined for n = 1; Var(X) = n
n−2

for n ≥ 3,
undefined for n = 1, 2.

3. The density fn(t) converges to the density of a standard normal, φ(t), as n→∞.

11.4 Random Vectors: Expectation and Variance

A random vector is a vector X = [X1X2 ...Xk]
T whose components X1, X2, ..., Xk are

real-valued random variables defined on the same probability space. The expectation of a
random vector E(X), if it exists, is given by the expected value of each component:

E(X) = [EX1 EX2 ...EXk]
T .

The covariance matrix of a random vector Cov(X) is given by

Cov(X) = E[(X − EX)(X − EX)T ] = E(XXT )− EXEXT .

We now give some general results on expectations and variances. We supply reasonings
for some of them, and you should verify the rest (usually by the method of entry-by-entry
comparison). We assume in what follows that k × k A and k × 1 a are constant, and we let
k × 1 µ = E(X) and k × k V = Cov(X) (vij = Cov(Xi, Xj)):

1. E(AX) = AE(X)

Proof : Exercise 7.5(a).

2. V ar(aTX) = aTV a.

Proof : Note that

var(aTX) = var(a1X1 + a2X2 + . . .+ akXk)

=
k∑
i=1

k∑
j=1

aiajCov(XiXj)

=
k∑
i=1

k∑
j=1

vijaiaj = aTV a �

3. Cov(AX) = AV AT

Proof Exercise 7.5(b).
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4. E(XTAX) = tr(AV ) + µTAµ

Proof : Let Ai be the ith row of A and aij be the ijth entry of A.
Note that tr(AV ) = tr(A(E(XXT )− EXEXT )) = tr(AE(XXT ))− tr(AEXEXT ).

tr(AE(XXT )) = tr


A1E(XXT )

...
AkE(XXT )




=
k∑
i=1

k∑
j=1

aijE(XjXi)

= E

(
k∑
i=1

k∑
j=1

aijXjXi

)

= E

(
k∑
i=1

AiXXi

)

= E

((
k∑
i=1

XiAi

)
X

)
= E(XTAX)

Meanwhile,
tr(AEXEXT ) = tr(EXTAEX) = EXTAEX = µTAµ.

So we have E(XTAX) = tr(AV ) + µTAµ. �

5. Covariance matrix V is positive semi-definite.

Proof : yTV y = V ar(yTX) ≥ 0 ∀y 6= 0. Since V is symmetric (why?), it follows that
V 1/2 = (V 1/2)T . �

6. Cov(aTX, bTX) = aTV b

Proof : Exercise 7.5(c).

7. If X, Y are two k × 1 vectors of random variables, we define their cross-covariance
matrix C as follows : cij = Cov(Xi, Yj). Notice that unlike usual covariance matrices, a
cross-covariance matrix is not (usually) symmetric. We still use the notation Cov(X, Y )
and the meaning should be clear from the context. Now, suppose A,B are k×k. Then
Cov(AX,BX) = AV BT .

Proof : Let cij be the ijth entry of Cov(AX,BX). Denote the ith row vectors of A
and B as Ai and Bi, respectively. By the result above,

cij = AiV Bj = ijth entry of AV BT . �
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Exercises

11.1 Show that if X ∼ f and g(·) is non-negative, then Eg(X) =
∫∞
−∞ g(x)f(x)dx.

[Hint: Recall that EX =
∫∞

0
P (X > t)dt if X ≥ 0.]

11.2 Let X be a continuous random variable with density fX . Find the density of Y = |X|
in terms of fX .

11.3 Let X1 ∼ Γ(α1, 1) and X2 ∼ Γ(α2, 1) be indepedent. Use the two-dimensional change
of variables formula to show that Y1 = X1 + X2 and Y2 = X1/(X1 + X2) are independent
with Y1 ∼ Γ(α1 + α2, 1) and Y2 ∼ Beta(α1, α2).

11.4 Using integration by parts, show that the gamma function Γ(t) =
∫∞

0
xt−1e−xdx

satisfies the relation Γ(t+ 1) = tΓ(t) for t > 0.

11.5 Prove the following results about vector expectations and variance:

(a) E(Ax) = AE(x)

(b) Cov(Ax) = AV AT

(c) Cov(aTx, bTx) = aTV b
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12 Further Applications to Statistics: Normal Theory

and F-test

12.1 Bivariate Normal Distribution

Suppose X is a vector of continuous random variables and Y = AX + c, where A is an
invertible matrix and c is a constant vector. If X has probability density function fX , then
the probability density function of Y is given by

fY (y) = |det(A)|−1fX(A−1(Y − c)).

The proof of this result can be found in appendix B.2.1 of Bickel and Doksum.

We say that 2 × 1 vector X =

[
X1

X2

]
has a bivariate normal distribution if ∃ Z1, Z2

I.I.D N(0, 1), s.t. X = AZ+µ. In what follows we will moreover assume that A is invertible.
You should check at this point for yourself that X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2), where

σ1 =
√
a11

2 + a12
2 and σ2 =

√
a21

2 + a22
2, and that Cov(X1, X2) = a11a21 + a12a22. We then

say that X ∼ N(µ,Σ), where

Σ = AAT =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
and ρ = Cov(X1,X2)

σ1σ2
(you should verify that the entries of Σ = AAT are as we claim). The

meaning behind this definition is made explicit by the following theorem:

Theorem: Suppose σ1 6= 0 6= σ2 and |ρ| < 1. Then

fX(x) = 1

2π
√
det(Σ)

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

Proof Note first of all that if A is invertible, then it follows directly that σ1 6= 0 6= σ2

and |ρ| < 1 (why?). Also,√
det(Σ) =

√
det(AAT ) =

√
det(A)2 = |det(A)| = σ1σ2

√
1− ρ2

(you should verify the last step). We know that fZ(z) = 1
2π

exp
(
−1

2
zT z
)

and since X =
AZ + µ we have by the result above:

fX(x) =
1

2π|det(A)|
exp

(
−1

2
(A−1(x− µ))T (A−1(x− µ))

)
=

1

2π|det(A)|
exp

(
−1

2
(x− µ)T (A−1)T (A−1)(x− µ)

)
=

1

2π|det(A)|
exp

(
−1

2
(x− µ)T (AAT )−1(x− µ)

)
=

1

2π
√
det(Σ)

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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which proves the theorem. The symmetric matrix Σ is the covariance matrix of X. �

You should prove for yourself (Exercise 8.1) that if X has a bivariate normal distribution
N(µ, V ), and B is invertible, then Y = BX + d has a bivariate normal distribution N(Bµ+
d,BV BT ).

These results generalize to more than two variables and lead to multivariate normal
distributions. You can familiarize yourself with some of the extensions in appendix B.6 of
Bickel and Doksum. In particular,we note here that if x is a k × 1 vector of IID N(0, σ2)
random variables, then Ax is distributed as a multivariate N(0, σ2AAT ) random vector.

12.2 F-test

We will need a couple more results about quadratic forms:

1. Suppose k × k A is symmetric and idempotent and k × 1 x ∼ N(0k×1, σ
2Ik×k). Then

xTAx
σ2 ∼ χr

2, where r = rank(A).

Proof : We write xTAx
σ2 = xTQ

σ
ΛQT x

σ
and we note that QT x

σ
∼ N(0, 1

σ2 × σ2QTQ) =

N(0, I), i.e.Q
T x
σ

is a vector of IID N(0, 1) random variables. We also know that the Λ
is diagonal and its main diagonal consist of r 1’s and k − r 0’s, where r = rank(A).
You can then easily see from matrix multiplication that x′Q

σ
ΛQ′x

σ
= z1

2 +z2
2 + . . .+zr

2,

where the zi’s are IID N(0, 1). Therefore x′Ax
σ2 ∼ χr

2. �

2. The above result generalizes further: suppose k× 1 x ∼ N(0, V ), and k× k symmetric
A is s.t. V is positive definite and either AV or V A is idempotent. Then x′Ax ∼ χr

2,
where r = rank(AV ) or rank(V A), respectively.

Proof : We will prove it for the case of idempotent AV and the proof for idempotent V A
is essentially the same. We know that x ∼ V 1/2z, where z ∼ N(0, Ik×k), and we know
that V 1/2 = (V 1/2)′, so we have: x′Ax = z′(V 1/2)′AV 1/2z = z′V 1/2AV 1/2z. Consider
B = V 1/2AV 1/2. B is symmetric, andB2 = V 1/2AV 1/2V 1/2AV 1/2 = V 1/2AV AV V −1/2 =
V 1/2AV V −1/2 = V 1/2AV 1/2 = B, so B is also idempotent. Then from the previ-
ous result (with σ = 1), we have z′Bz ∼ χr

2, and therefore x′Ax ∼ χr
2, where

rrank(B) = rank(V 1/2AV 1/2). It is a good exercise (Exercise 8.2) to show that
rank(B) = rank(AV ). �

3. Let U = x′Ax and V = x′Bx. Then the two quadratic forms are independent (in the
probabilistic sense of the word) if AV B = 0. We will not prove this result, but we will
use it.

Recall (Section 4.2) that we had a model Y = Xβ + ε, where Y is n × 1 vector of
observations, X is n×p matrix of explanatory variables (with linearly independent columns),
β is p × 1 vector of coefficients that we’re interested in estimating, and ε is n × 1 vector of
error terms with E(ε) = 0. Recall that we estimate β̂ = (X ′X)−1X ′Y , and we denote fitted
values Ŷ = Xβ̂ = HY , where the hat matrix H = X(X ′X)−1X ′ is the projection matrix
onto columns of X, and e = Y − Ŷ = (I −H)Y is the vector of residuals. Recall also that
X ′e = 0. Suppose now that ε ∼ N(0, σ2I), i.e. the errors are IID N(0, σ2) random variables.
Then we can derive some very useful distributional results:
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1. Ŷ ∼ N(Xβ, σ2H).

Proof : Clearly, Y ∼ N(Xβ, σ2I), and Ŷ = HY =⇒ Ŷ ∼ N(HXβ,Hσ2IH ′) =
N(X(X ′X)−1X ′Xβ, σ2HH ′) = N(Xβ, σ2H). �

2. e ∼ N(0, σ2(I −H)).

Proof : Analagous to 1.

3. Ŷ and e are independent (in probabilistic sense of the word).

Proof : Cov(Ŷ , e) = Cov(HY, (I − H)Y ) = H(var(Y ))(I − H) = Hσ2I(I − H) =
σ2H(I −H) = 0. And since both vectors were normally distributed, zero correlation
implies independence. Notice that Cov above referred to the cross-covariance matrix.
�

4. ‖e‖
2

σ2 ∼ χ2
n−p.

Proof : First notice that e = (I −H)Y = (I −H)(Xβ + ε) = (I −H)ε (why?). Now,

‖e‖2

σ2
=
e′e

σ2
=
ε′(I −H)′(I −H)ε

σ2
=
ε′(I −H)ε

σ2

Since (I − H) is symmetric and idempotent, and ε ∼ N(0, σ2I), by one of the above

results we have ε′(I−H)ε
σ2 ∼ χr

2, where r = rank(I −H). But we know (why?) that

rank(I −H) = tr(I −H) = tr(I −X(X ′X)−1X ′)

= tr(I)− tr(X(X ′X)−1X ′) = n− tr(X ′X(X ′X)−1)

= n− tr(Ip×p) = n− p

So we have ‖e‖
2

σ2 ∼ χ2
n−p, and in particular E(‖e‖

2

n−p ) = σ2. �

Before we introduce the F-test, we are going to establish one fact about partitioned ma-
trices. Suppose we partition X = [X1 X2]. Then [X1 X2] = X(X ′X)−1X ′[X1 X2] =⇒
X1 = X(X ′X)−1X ′X1 and X2 = X(X ′X)X ′X2 (by straightforward matrix multiplicaiton)
or HX1 = X1 and HX2 = X2. Taking transposes we also obtain XT

1 = XT
1 X(XTX)−1XT

and XT
2 = XT

2 X(XTX)−1X ′. Now suppose we want to test a theory that the last p2 coeffi-
cients of β are actually zero (note that if we’re interested in coefficients scattered throught
β, we can just re-arrange the columns of X). In other words, splitting our system into
Y = X1β1 +X2β2 + ε, with n× p1 X1 and n× p2 X2 (p1 + p2 = p), we want to see if β2 = 0.

We consider the test statistic

‖Ŷf‖2 − ‖Ŷr‖2

σ2
=
Y T (X(XTX)−1XT −X1(XT

1 X1)−1XT
1 )Y

σ2
,

where Ŷf is the vector of fitted values when we regress with respect to all columns of X (full

system), and Ŷr is the vector of fited values when we regress with respect to only first p1
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columns of X (restricted system). Under null hypothesis (β2 = 0), we have Y = X1β1 + ε,
and expanding the numerator of the expression above, we get

Y T (X(XTX)−1XT −X1(XT
1 X1)−1XT

1 )Y

= εT (X(XTX)−1XT −X1(XT
1 X1)−1XT

1 )ε+ βT1 X
T
1 (X(XTX)−1XT −X1(XT

1 X1)−1XT
1 )X1β1.

We recognize the second summand as

(βT1 X
T
1 X(XTX)−1XT − βT1 XT

1 X1(XT
1 X1)−1XT

1 )X1β1 = (βT1 X
T
1 − βT1 XT

1 )X1β1 = 0.

So, letting A = X(XTX)−1XT − X1(XT
1 X1)−1XT

1 , under null hypothesis our test statistic
is ε′Aε

σ2 . You should prove for yourself (Exercise 8.3) that A is symmetric and idempotent of

rank p2, and therefore ε′Aε
σ2 ∼ χ2

p2 . That doesn’t help us all that much yet since we don’t
know the value of σ2.

We have already established above that
‖ef‖2
σ2 ∼ χ2

n−p, where ‖ef‖2 = εT (I − H)ε. We
proceed to show now that the two quadratic forms εT (I − H)ε and εTAε are independent,
by showing that (I −H)σ2IA = σ2(I −H)A = 0. The proof is left as an exercise for you.

We will now denote
‖ef‖2
n−p by MSRes, and we conclude that under the null hypothesis

εTAε

p2σ2

/
εT (I −H)ε

(n− p)σ2
=
‖Ŷf‖2 − ‖Ŷr‖2

p2MSRes
∼ Fp2,n−p.

We can now test our null hypothesis β2 = 0, using this statistic, and we would reject for
large values of F .

Exercises

12.1 Show that if X has a bivariate normal distribution N(µ, V ), and B is invertible, then
Y = BX + d has a bivariate normal distribution N(Bµ+ d,BV BT ).

12.2 Assume V is positive definite, AV , and B = V
1
2AV

1
2 is idempotent. Show that

rank(B) = rank(AV ) (hint: consider the nullspaces, and invertible transformation v =
V 1/2w).

12.3 Let X = [X1X2]T for n × p1 X1 and n × p2 X2, and A = X(XTX)−1XT −
X1(XT

1 X1)−1XT
1 . Show that A is symmetric and idempotent of rank p2 (use trace to deter-

mine rank of A).
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